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Abstract

The inclusion of rigid elements into elastic composites may lead to superior mechan-
ical properties for the equivalent elastic continuum, such as, for instance, extreme
auxeticity. To allow full exploitation of these properties, a tool for the homogeniza-
tion of two-dimensional elastic grids containing rigid elements is developed and tested
on elaborate geometries, such as, for instance, Chinese lattices. The rigid elements
are assumed to be either jointed with full continuity of displacement or hinged to the
elastic rods. It is shown that the two different constraints induce strongly different
mechanical characteristics of the equivalent elastic solid. The presented results open
the way to the design of architected materials or metamaterials containing both elastic
and rigid parts.

Keywords Periodic lattice · Homogenization · Rigid constraint

1 Introduction

Homogenization of elastic composites leading to an equivalent continuum is a well-developed
theory, a topic subjected to a thorough research effort [1–7], and represents the crucial tool
in the design of architected materials and metamaterials [8]. In particular, homogenization
techniques for lattices have been addressed for truss structures [9, 10] and for continuously
jointed beams [11–14], also keeping into account higher-order effects [15–18].

It is known that the inclusion of rigid elements inside an elastic composite may yield
useful and sometimes even extreme mechanical properties. An example is the hexagonal
grid reaching the limit of Poisson’s ratio equal to -1, thanks to elements which are flexurally
rigid but axially compliant [19, 20]. Rigid elements connected through elastic hinges (in
other words, truss structures) have been considered in the quest for auxetic behaviour [21,
22], or to identify polar elastic materials [23].

Despite of their interest in the development of metamaterials, a systematic treatment
of homogeneization for elastic composites containing rigid elements is still lacking and
is therefore the subject of the present article. In particular, homogenization theory is
developed for two-dimensional elastic grids of beams containing rigid parts of arbitrary
characteristics, leading to an equivalent elasticity tensor.

The rigid parts are assumed to be either fully jointed or hinged to the elastic ele-
ments. It is shown that the different degree of connection leads to strong differences in
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the mechanical properties of the equivalent continuum. In particular, closed circuits of
rigid elements hinged to each other still permit deformation of the inner elastic beams,
becoming impossible when the elements are fully jointed.

Applications of the developed tool reveal several effects related to the presence of rigid
inclusions. In particular, it is shown that there are geometries for which the Poisson’s ratio
of the isotropic equivalent continuum or, more in general, the coefficients of mutual influ-
ence of an equivalent triclinic material, turn out to be independent of the rigid phase, while
in other cases they are not. Moreover, all the examples with fully connected rigid elements
show a singularity of 1st-order in the elastic constants when the limit of a completely rigid
unit cell is approached.

Our results may be employed in the design of architected materials in which a rigid
phase is exploited to obtain ‘exotic’ mechanical properties.

2 Homogenization of elastic grids with rigid elements

Homogenization of two-dimensional lattices of elastic beams, including rigid elements, is
developed following the approach presented in [24–26]. In particular, homogenization is
developed for a unit cell composed of elastic flexible and axially deformable beams, jointed
together with rigid parts.

2.1 The mechanics of an elastic beam

Consider a two-dimensional elastic grid endowed with rigid elements connecting two or
more nodes. The periodic structure of this grid is obtained by repeating a unit cell along
two directions {a1,a2}. Referring to any of the elastic beams of length l, in a local
reference system, its in-plane displacement field u of axial and transverse components u
and v, respectively, is a function of the local variable s, ranging between 0 and l. The
adoption of Euler-Bernoulli beam theory relates the rotation of the cross-section θ to the
derivative of the transverse displacement as θ(s) = v′(s). The equilibrium equations for
the beam and their integrals are

u′′(s) = 0, ⇒ u(s) = C1 +C2s , v′′′′(s) = 0, ⇒ v(s) = D1 +D2s+D3s
2 +D4s

3 , (1)

where Ci and Di are constants. The nodal displacements of the beam can be collected in
the vector

q = [u(0), v(0), θ(0), u(l), v(l), θ(l)]T , (2)

so that it is possible to represent the displacement field as

u(s) =

1−
s

l
0 0

s

l
0 0

0
(
1− s

l

)2 (
1 + 2

s

l

) (
1− s

l

)2
s 0

(
3− 2

s

l

) s2

l2
(s− l)

s2

l2

 q . (3)

The corresponding elastic strain energy is

U =
1

2
q ·Kq , (4)
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Figure 1: Unit cell composed of Euler-Bernoulli beams and one rigid element connecting the nodes 1-2
in its undeformed (left) and deformed (right) configurations.

where K is the stiffness matrix, which through equation (3) results to be

K =



EA/l 0 0 −EA/l 0 0
0 12EI/l3 6EI/l2 0 −12EI/l3 6EI/l2

0 6EI/l2 4EI/l 0 −6EI/l2 2EI/l
−EA/l 0 0 EA/l 0 0

0 −12EI/l3 −6EI/l2 0 12EI/l3 −6EI/l2

0 6EI/l2 2EI/l 0 −6EI/l2 4EI/l

 , (5)

being EA and EI the axial and flexural stiffnesses of the rod. Notably, this is the stiffness
matrix commonly used in the discretization of Euler-Bernoulli beams within the finite
element approximation. However, in the present case, the displacement field (3) and the
corresponding elastic energy (4) are exact due to the absence of prestress in the beam and
the absence of distributed loading along its axis. Instead, the loading is applied only at
the end of the nodes.

2.2 Modeling of rigid connections

The presence of rigid elements inside the unit cell introduces a set of constraints, effectively
reducing the number of its degrees of freedom. For instance, for the unit cell represented in
Fig. 1 (left part), one rigid element links the nodes 1-2, of coordinates (x1, y1) and (x2, y2)
in the global oxy–reference system, characterized by the two orthogonal unit vectors e1
and e2. In the following, the homogenization procedure will lead to elasticity tensors given
in components in that reference system.

During a deformation process, as sketched in Fig. 1 (right part), the displacements (of
components u and v) and rotations (θ) of the ends (a) and (b) of a rigid element of length
ℓ are related for a finite transformation through

θ(b) = θ(a) = θ , u(b) = u(a)−ℓ[cosα−cos(α+θ)] , v(b) = v(a)+ℓ[sin(α+θ)−sinα] , (6)

which for a small rotation, can be linearized, in agreement with Poisson’s theorem, in the
form

θ(b) = θ(a) = θ , u(b) = u(a) − θ ℓ sinα , v(b) = v(a) + θ ℓ cosα . (7)
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The way in which the displacement of the rigid element transmits to a node is influenced
by how the connection between the element and the node is realized. Two cases will be
analyzed: (i.) a perfectly bonded, called ‘clamped’, and (ii.) a ‘hinged’, connection.

In the case (i.) of a clamped connection, there is full continuity of the displacement
and rotation between the rigid body and the node. On the other hand, in the case (ii.)
of a hinged connection, only the displacement remains continuous between the rigid body
and the node, while the two rotations are unrelated.

Considering now two nodes, say, 1 and 2, of the structure, jointed via a rigid element,
the four situations listed in Table 1 can arise. The effect of the rigid constraint is to reduce
the degrees of freedom of the unit cell, so that the description of the unit cell is eventually
condensed.

Clamped 1 – Clamped 2 Hinged 1 – Hinged 2

θ2 = θ1

u2 = u1 − (y2 − y1)θ1

v2 = v1 + (x2 − x1)θ1

(u2 − u1)(x2 − x1) =

− (v2 − v1)(y2 − y1)

Clamped 1 – Hinged 2 Hinged 1 – Clamped 2

u2 = u1 − (y2 − y1)θ1

v2 = v1 + (x2 − x1)θ1

u2 = u1 − (y2 − y1)θ2

v2 = v1 + (x2 − x1)θ2

Table 1: List of linearized kinematic conditions to be imposed between node 1 (of coordinates {x1, y1})
and node 2 (of coordinates {x2, y2}) when the two nodes are connected with a rigid element.

2.3 The mechanics of the unit cell

The equilibrium equations for the unit cell can be obtained through the principle of virtual
work, by imposing

δU = f · δq ∀δq , (8)

where δU is the internal virtual work corresponding to a virtual displacement, and f · δq
represents its external counterpart. Being the unit cell formed of Nb elastic beams and Nr

rigid elements, the strain energy is obtained by summing contributions from each elastic
rod

δU =

Nb∑
k=1

δUk(Ckq) = Kq · δq , (9)

where the dependency on the connectivity matrix Ck is given evidence because it is needed
to set the appropriate end conditions for different beams (continuity of rotations or dis-
placements and so on). In fact, it is qk = Ckq, with q denoting all the degrees of freedom
of the unit cell.

Excluding the presence of body forces, the unit cell, ideally ‘excised’ from the rest of
the grid, transmits forces through its boundary. As a consequence, the generalized forces
f perform virtual work only at the boundary nodes.

In conclusion, the system of equilibrium equations results to be

Kq = f , (10)

where K = ∂2U/∂q2 is the stiffness matrix of dimension 3NJ×3NJ , with NJ representing
the total number of nodes of the unit cell.
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2.4 Homogenization

The homogenization technique is based on the Hill-Mandel theorem [27, 28], linking the
microscopic scale of the grid to the macroscopic scale of the equivalent continuum. After
the introduction of appropriate conditions on the periodicity of the fields in the lattice,
the average strain energy density of the continuum is set to be equal to the energy den-
sity of the lattice under an equivalent measure of deformation. This is known as macro-
homogeneity condition, needed to obtain the constitutive tensor of the two-dimensional
continuum equivalent to the discrete structure.

The generalized displacement vector referred to the j-th node in the lattice q(j) =[
u(j), v(j), θ(j)

]
, located at x(j), is assumed to be given by the sum of periodic functions

ũ(j), ṽ(j), θ̃(j) and an affine contribution εx(j), modulated by the uniform strain tensor ε,
the so-called Cauchy-Born kinematics [29], so that[

u(j), v(j), θ(j)
]
=

[
ũ(j) +

(
εx(j)

)
1
, ṽ(j) +

(
εx(j)

)
2
, θ̃(j)

]
. (11)

Periodicity implies that for every pair of nodes p, q and integers n1, n2 ∈ {0, 1}
x(p) − x(q) = n1a1 + n2a2, =⇒ ũ(p) = ũ(q), ṽ(p) = ṽ(q), θ̃(p) = θ̃(q). (12)

The above conditions are identical to the long-wavelength limit of the Floquet-Bloch con-
ditions used for wave propagation in periodic media.

With reference to Fig. 2, a generic parallelepiped-shaped cell is assumed in which there
are n internal nodes (including those connected to a rigid inclusion) and 8 boundary nodes,
4 defining the corners and 4 inside the lateral edges. In terms of generalized displacements,
and denoting with a superimposed tilde their periodic part, the above conditions (12)
specialize to

q̃(l) = q̃(r) , q̃(b) = q̃(t) , q̃(lb) = q̃(rb) = q̃(rt) = q̃(lt) , (13)

where q(lt), q(rt), q(lb), q(rb) are the vectors collecting the generalized displacements of
the nodes located at the corners, while q(l), q(r), q(b), q(t) refer to the nodes internal to
the edges of the parallelepiped. The displacement components of internal nodes are all
collected in the vector

q(i) = {q(1), q(2), ..., q(n)︸ ︷︷ ︸
internal nodes

} ,

which therefore does not only gather the displacements of the node i, but all displacements
of all internal nodes, n = 5 in the figure.

Finally, it is convenient to gather all the periodic components of generalized displace-
ments in the vector

q̃ = [q̃(i), q̃(l), q̃(b), q̃(lb), q̃(r), q̃(t), q̃(rb), q̃(lt), q̃(rt)]T , (14)

so that conditions (13) allow a condensation of periodic components of generalized displace-
ment into a vector which only contains the independent periodic displacement components
q̃∗ as

q̃ = Z0q̃
∗ , with Z0 =



I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I
0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 I
0 0 0 I


, and q̃∗ =


q̃(i)

q̃(l)

q̃(b)

q̃(lb)

 , (15)
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Figure 2: Schematics of a unit cell of parallelepiped-shape, with two internal rigid elements, one connect-
ing the nodes (4) and (5) with full continuity of all generalized displacements, the other connecting nodes
(1) and (2) with a hinged contact. The internal nodes are 5 and all their displacement components are
collected in the vector q(i) = {q(1), q(2), ..., q(5)}. The displacements of the 8 boundary nodes are gathered
as: 4 in vectors q(lt), q(rt), q(lb), q(rb) pertaining to the corners and 4 in q(l), q(r), q(b), q(t), corresponding
to the nodes internal to the edges.

where I represents the identity matrix in one case of the order enforced by the dimension
of the vector q̃(i), while for vectors q̃(l), q̃(b), and q̃(lb) the order is 3. Note that a more
general formulation in which a generic number of nodes is considered inside the edges of
the parallelepiped-shaped cell can easily be implemented.

Finally, the generalized displacements of all nodes forming the unit cell, q, can be
obtained by adding an affine component q̂(ε) = [εx(j), 0]T to a periodic component, in
order to describe the kinematics of the unit cell as

q(ε, q̃∗) = q̂(ε) +Z0q̃
∗ . (16)

A substitution of the representation for generalized displacements of the unit cell, eq. (16),
into the equilibrium equations (10) and a left multiplication by ZT

0 leads to

ZT
0 KZ0q̃

∗ +ZT
0 Kq̂(ε) = ZT

0 f . (17)

The term on the right of eq. (17) possesses the partition dictated by eq. (15), and has to
vanish, because anti-periodic forces are generated by periodic displacements,

ZT
0 f =

[
f (i),f (l) + f (r),f (b) + f (t),f (lb) + f (rb) + f (lt) + f (rt)

]T
= 0, (18)

so that, in the absence of external forces applied to the grid, it follows

ZT
0 KZ0q̃

∗ = −ZT
0 Kq̂(ε) . (19)

The matrix ZT
0 KZ0 in eq. (19) is always singular whatever unit cell is selected. This

follows from ZT
0 KZ0t = 0, occurring for every vector t representing a rigid-body trans-

lation, which in the plane is the linear combination of two orthogonal vectors, say, t1 and
t2. Assuming that this translation is the only source of singularity (the null space has
dimension 2), Fredholm’s alternative theorem states that the solution exists when

t1 ·ZT
0 Kq̂(ε) = 0, t2 ·ZT

0 Kq̂(ε) = 0, (20)
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two conditions that are certainly verified, so that the linear problem (19) can be solved for
q̃∗ = q̃∗(ε). The solution is therefore found from equation (16) in the form

q(ε, q̃∗(ε)) = q̂(ε) +Z0q̃
∗(ε) , (21)

linear in ε, so that the elastic strain-energy stored in a unit cell of the grid is a quadratic
function of the applied uniform strain ε

E(ε) = 1

2
q(ε, q̃∗(ε)) ·Kq(ε, q̃∗(ε)). (22)

By assuming a linear elastic constitutive law for the equivalent continuum, the stress
tensor σ is linearly related to the strain tensor ε through the fourth-order elasticity tensor
E, i.e. σ = E ε, and the strain energy W is defined as

W(ε) =
1

2
ε · E ε . (23)

The elastic continuum equivalent to the grid can be obtained by imposing a match between
the energies E , eq. (22), and W, eq. (23),

ε · E ε =
1

|A|q(ε, q̃
∗(ε)) ·Kq(ε, q̃∗(ε)), (24)

where |A| represents the area of the unit cell. Eq. (24) directly leads to the constitutive
tensor for the effective Cauchy material equivalent to the lattice

E =
1

2|A|
∂2 q(ε, q̃∗(ε)) ·Kq(ε, q̃∗(ε))

∂ε2
, (25)

equipped with the minor symmetries enforced by the symmetry of ε and the major sym-
metry related to the symmetry of K.

3 Influence of rigid elements on homogenized elastic proper-
ties

The purpose of this section is to show how the elasticity tensor is affected by the presence
of rigid elements. The homogenization procedure illustrated in the previous section is
applied to paradigmatic cases designed to cover all the material symmetry groups in a
two-dimensional formulation. To this purpose, the following examples are inspired by
Chinese lattices [30], which are composed of closed concentric elements within the unit
cells. For each example the fourth-order elasticity tensor (25) will be derived and expressed
with respect to the reference system e1–e2. This tensor can also be written in the Voigt
notation as a symmetric matrix

σ11

σ22

σ12

 =


E1111 E1122 E1112

· E2222 E2212

· · E1212



ε11

ε22

2ε12

 .

A symmetry transformation for the equivalent solid is an orthogonal tensor Q that leaves
the components of the fourth-order tensor E unchanged, namely,

E′
ijkl = QpiQqjQrkQslEpqrs ≡ Eijkl, (26)
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where E′
ijkl are the components of E with respect to the rotated reference system e′i = Qei.

The symmetry group for the equivalent solid is defined as the set of all orthogonal tensors
Q that obey (26). In a two-dimensional context, where indices run between 1 and 2, only
4 symmetry groups exist [31, 32]. Examples of structures are illustrated in Fig. 3, forming
elastic grids which lead to equivalent continua possessing the symmetries listed in Table 2.

Symmetry
group Restrictions on E

Independent
elastic

constants

Triclinic or
Rhombic None 6

Orthotropic
or
Rectangular

E1112 = E2212 = 0 4

Cubic or
Square E1112 = E2212 = 0 , E1111 = E2222 3

Isotropic E1112 = E2212 = 0 , E1111 = E2222 , E1212 =
E1111 − E1122

2
2

Table 2: Material symmetry groups of the elasticity tensor E in a two-dimensional formulation.

Triclinic
or

Rhombic

0

π
/2

Orthotropic
or

Rectangular

0

π/
4

π
/2

3π
/4

Cubic
or

Square

0

π/
6

π
/3π
/2

2π
/3

5π
/6

Isotropic

Figure 3: Examples of microstructures leading to equivalent 2D-continua enhanced with the symmetries
shown in Table 2. Reflection axes are indicated with red dashed lines.

For a triclinic material, the compliance matrix S = E−1 reads as

S =



1

E1
−ν21
E2

η1,12
G12

−ν12
E1

1

E2

η2,12
G12

η12,1
E1

η12,2
E2

1

G12

 ,

namely, in terms of engineering constants as suggested by Lekhnitskii [33], in which Ei,
Gij , and νij are respectively the Young moduli, the shear moduli and Poisson’s ratios
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measured in the i–j directions; in addition, coefficients ηi,ij = εi/γij and ηij,i = γij/εi
denote the coefficients of mutual influence of I and II kind, respectively.

3.1 Triclinic, orthotropic, and cubic materials

Triclinic, orthotropic, and cubic materials can be obtained from a lattice composed of the
unit cell (with dimensions l1 × l2) forming the elastic grid shown in Fig. 4.

Inside the unit cell, a parallelogrammic rigid inclusion is present, with its vertices rigidly
jointed to four elastic beams. The components of the elasticity tensor, equivalent to the
grid, have been made dimensionless through a division by the horizontal axial beam’s
stiffness

Ẽijkl = Eijkl/(EA/l1) ,

and depend on the extension of the rigid inclusion within the unit cell, via parameter ζ,
ranging between 0 (absence of rigid elements) and 1 (the whole unit cell becomes rigid). In
particular, ζ represents the nondimensional length of the diagonals characterizing the par-
allelogrammic rigid inclusion, as sketched in Fig. 4. Moreover, the following dimensionless
ratios are used

λ1 = l1(1− ζ)

√
A1

I1
, λ2 = l2(1− ζ)

√
A2

I2
, ξ = l2/l1 , χ = A2/A1 , (27)

where the slenderness λ1 and λ2 depend on ζ because an increase in the dimension of the
rigid inclusion leads to a reduction in the length of the elastic beams. In the following,
the cross-section areas of the beams have been assumed to be equal, A2 = A1 = A, for
simplicity.

Figure 4: A unit cell composed of four elastic beams jointed through a parallelogrammic rigid inclusion
(left) leads to a grid (right), which is equivalent to an elastic triclinic material. The latter reduces to an
orthotropic elastic material when α = π/2 and to a square material when α = π/2 and ξ = 1. The size of
the rigid inclusion is set by the dimensionless parameter ζ ∈ [0, 1].

With the exception of α = π/2, the homogenized constitutive tensor, equivalent to the
grid represents a triclinic material, and is characterized by the following components (in
the reference system e1–e2 shown in Fig. 1)

Ẽ1111 =
sinα

1− ζ

[
1 + ξ

ξ sin2 α
− 1− cos2 α+

12 cos2 α

λ2
2 + λ2

1ξ

]
, Ẽ1212 =

sinα

1− ζ

[
12 sin2 α

λ2
2 + λ2

1ξ
+ cos2 α

]
,

9



Ẽ1122 =
cos2 α sinα(λ2

2 + λ2
1ξ − 12)

(1− ζ)(λ2
2 + λ2

1ξ)
, Ẽ2212 =

cosα sin2 α(λ2
2 + λ2

1ξ − 12)

(1− ζ)(λ2
2 + λ2

1ξ)
,

Ẽ1112 =
cos3 α[λ2

2 + λ2
1ξ + 12 tan2 α]

(1− ζ)(λ2
2 + λ2

1ξ)
, Ẽ2222 =

1

1− ζ

[
sin3 α+ 3

sinα+ sin(3α)

λ2
2 + λ2

1ξ

]
. (28)

In the particular case α = π/2, the principal directions a1 and a2 of the cell are orthogonal,
so that an orthotropic material is obtained


Ẽ1111 Ẽ1122 Ẽ1112

· Ẽ2222 Ẽ2212

· · Ẽ1212

 =
1

1− ζ



1

ξ
0 0

· 1 0

· · 12

λ2
2 + λ2

1ξ

 , (29)

where the term Ẽ1122 = 0 is null because, when subjected to vertical (or horizontal) uniaxial
stress, the horizontal (or vertical) deformation is null.

Another particular case is obtained when α = π/2 and ξ = 1, which implies Ẽ1111 ≡
Ẽ2222, so that a cubic material is obtained.

In terms of engineering constants (made dimensionless through division by EA/l1), the
components (28) provide the values

Ẽ1 =
cscα

ξ(1− ζ)
, Ẽ2 =

24 sinα

(1− ζ)[λ2
2 + λ2

1ξ + 12 + cos(2α)(λ2
2 + λ2

1ξ − 12)]
,

G̃12 =
12 cscα

(1− ζ)[λ2
2 − 12 + (λ2

1 − 12)ξ + 12 csc2 α(1 + ξ)]
,

η1,12 =
12ξ cotα

12− λ2
2 + (12− λ2

1)ξ − 12 csc2 α(1 + ξ)
, η2,12 =

λ2
2 + λ2

1ξ − 12

12ξ
η1,12 ,

η12,1 =
Ẽ1

G̃12

η1,12 , η12,2 =
Ẽ2

G̃12

η2,12 . (30)

A particularly interesting feature is that all coefficients of mutual influence are independent
of the rigid phase, while they are only functions of the elastic properties of the beams and
of their inclination α. Another interesting feature is that the limit of rigid material is
obtained when ζ −→ 1 with a 1st-order singularity.

The effect of rigid inclusion is investigated in Fig. 5, where the elastic and shear moduli,
eqs. (30)1−3, are plotted versus ζ. The figure pertains to the triclinic case, with λ1 = λ2 =
20, ξ = 2/3 and α = π/3. As expected, all the constants blow up at the increase of ζ, so
that they approach infinity when ζ tends to 1.

The effect of the inclination α of the elastic beams is investigated in Fig. 6 where
λ1 = λ2 = 20, ξ = 2/3 and ζ = 0.5. The figure on the left shows that the elastic moduli Ẽ1

and Ẽ2 are affected by α in the opposite way, so that the former decreases, while the latter
increases. The shear modulus G̃12 has a complicated behaviour, where after an increase a
peak is reached, followed by a decreasing curve.

The coefficients of mutual influence, reported on the right of Fig. 6, do not depend on
ζ, thus the angle α represents the sole way to tune them. The coefficients of I kind, η1,12
and η2,12, show the same qualitative behaviour vanishing at the boundaries of the domain,
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0.6

0.8

ζ

Ẽ
1

Ẽ
2

G̃
1
2

Figure 5: The elastic and shear moduli of a triclinic material grow and tend to infinity when the rigid
elements invade the unit cell, ζ → 1. The unit cell is characterized by λ1 = λ2 = 20, ξ = 2/3, α = π/3.
Note the two different scales reporting Ẽ1 and Ẽ2 on the left and G̃12 on the right of the figure.

while reaching a minimum for α ≈ π/16. In correspondence with this minimum, a shear
deformation can maximize the consequent compression along the horizontal and vertical
directions. The coefficients of II kind behave differently from those pertinent to the I kind.
Although η12,2 assumes a shape analogous to that of coefficients of I kind, the minimum is
shifted toward the right. The coefficient η12,1 vanishes at α = π/2 and diverges towards the
opposite side of the domain. Therefore, a tensile load along the vertical direction induces
the maximum shear deformation when 3π/8 < α < π/2; otherwise, a tensile load along
the horizontal direction leads to a shear deformation which grows when α is small.
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Ẽ1

Ẽ2
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Figure 6: Engineering constants (30) for an elastic material equivalent to the grid shown in Fig. 4, as
functions of the inclination of the elastic beams α. The unit cell is characterized by λ1 = λ2 = 20, ξ = 2/3
and ζ = 0.5. Note the presence of two different scales reporting quantities on the left and on the right of
the figures.
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3.2 Isotropic materials

Two different unit cells, both leading to an isotropic equivalent material, are investigated
and compared, namely, a cell containing two triangular rigid inclusions, Fig. 7, and another
cell containing a hexagonal rigid inclusion, Fig. 8. In both cases, isotropy requires that the
elastic beams (having cross-section area A, moment of inertia I, and length ℓ) are identical
in the different directions, so that

λ = ℓ(1− ζ)

√
A

I
, (31)

where ζ ∈ [0, 1] a dimensionless measure of the inclusion’s edge, Fig. 7.

Figure 7: A unit cell containing two rigid elements in the form of equilateral triangles (left), with an edge
of dimensionless measure ζ, leads to an isotropic lattice (right).

The elastic grid reported in Fig. 7 (right) leads to an equivalent continuum characterized
by the following components (divided by EA/ℓ) of the elasticity tensor

Ẽ1111 Ẽ1122 Ẽ1112

· Ẽ2222 Ẽ2212

· · Ẽ1212

 =
1

2
√
3(1− ζ)(λ2 + 12)


λ2 + 36 λ2 − 12 0

· λ2 + 36 0

· · 24

 . (32)

Denoting with Ẽ the dimensionless Young’s modulus and with ν the Poisson’s ratio, the
components (32) lead to

Ẽ =
16
√
3

(1− ζ)(λ2 + 36)
, ν = 1− 48

λ2 + 36
, (33)

Figure 8: A unit cell containing a hexagonal rigid inclusion (left), with an edge of dimensionless measure
ζ, leads to an isotropic lattice (right).
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showing that ν is independent of ζ, but merely depends on λ.
The lattice shown in Fig. 8 (right), leads to the following components of the elasticity

tensor 
Ẽ1111 Ẽ1122 Ẽ1112

· Ẽ2222 Ẽ2212

· · Ẽ1212

 =

√
3

4λ2(1− ζ)


3(λ2 + 4) λ2 − 12 0

· 3(λ2 + 4) 0

· · λ2 + 12

 , (34)

while the engineering constants are

Ẽ =
2(λ2 + 12)√

3(1− ζ)(4 + λ2)
, ν =

1

3
− 16

3(λ2 + 4)
. (35)

The Young’s modulus of equivalent continuum is plotted in Fig. 9 (on the left) as a function
of ζ, with λ = 20; while the Poisson’s ratio, independent of ζ, is plotted as a function of λ
(on the right).

In both cases an auxetic behaviour, corresponding to negative Poisson’s ratio, is found,
with the following different limits for the two different cells

ν ∈
(
−1

3
, 1

)
for the grid shown in Fig. 7,

ν ∈
(
−1,

1

3

)
for the grid shown in Fig. 8.

(36)

It is important to notice that the above-introduced elastic modulus E and Poisson’s ratio
ν refer to a purely two-dimensional theory, so that they differ from their three-dimensional
counterparts. In particular, the range of validity for the constants E and ν to enforce
positive definiteness of the strain energy is

E > 0 , ν ∈ (−1, 1) . (37)

While the limits (36) apparently show that with the two lattices it is possible to cover all
the range of ν for the equivalent continuum, it should be noticed that auxeticy is obtained
for λ < 5. However, for λ < 10, the beam theory cannot be considered valid and, as a
consequence, the auxetic behavior found here is not of practical interest.

3.3 Chiral lattices

Two chiral lattices, inspired by the geometries reported in [30], are shown in Figs. 10 and
13. They are homogenized by assuming the rigid elements as perfectly connected to the
elastic beams.

The former geometry involves a square unit cell, of dimensions ℓ × ℓ, Fig. 10. Inside
the unit cell, a rigid square element is defined through the length of its edge, ζℓ/

√
2, with

ζ ∈ [0, 1]. Elastic beams, of slenderness

λ =
ℓ√
2

(√
2− ζ2 − ζ

)√
A

I
, (38)

are connected to the four corners of the inclusion.
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Figure 9: Young’s modulus (as a function of ζ) and Poisson’s ratio (as a function of λ) for two elastic
materials equivalent to the lattices with triangular (red line) and hexagonal (black line) inclusions.

Figure 10: A chiral lattice is obtained from a square unit cell (with an edge of length ℓ), containing a
square rigid inclusion (with an edge of length ζℓ/

√
2, ζ ∈ [0, 1]).

The homogenization leads to a material characterized by the following components of
the elasticity tensor (divided by EA/ℓ), in the reference system e1–e2 shown in Fig. 10,

Ẽ1111 = Ẽ2222 =
(ζ +

√
2− ζ2)[96λ2 − ζ2(ζ2 − 2)(λ2 − 12)2]

4
√
2λ2(1− ζ2) [24 + ζ2(λ2 − 12)]

,

Ẽ1212 =

(
ζ +

√
2− ζ2

) [
24 + ζ2(λ2 − 12)

]
4
√
2λ2(1− ζ2)

, Ẽ1122 =
ζ2(ζ2 − 2)(λ2 − 12)2

[24 + ζ2(λ2 − 12)]2
Ẽ1212 ,

Ẽ1112 =
ζ
√
2− ζ2(λ2 − 12)

24 + ζ2(λ2 − 12)
Ẽ1212 , Ẽ2212 = −Ẽ1112 . (39)
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A rotation of the reference system e1–e2 by one of the anticlockwise angles

θ̂n = arctan

√
2−

√
2− ζ2

ζ
± n

π

4
, ∀n ∈ Z, (40)

provides a principal reference system e′1–e′2 in which the components of the elasticity tensor
show that the material is cubic

Ẽ′
1111 = Ẽ′

2222 =
(ζ +

√
2− ζ2)[48 + ζ2(λ2 − 12)]

2
√
2(1− ζ2) [24 + ζ2(λ2 − 12)]

,

Ẽ′
1212 =

3
√
2
(
ζ +

√
2− ζ2

)
λ2(1− ζ2)

, Ẽ′
1122 =

ζ2
(
ζ +

√
2− ζ2

)
(λ2 − 12)

2
√
2(1− ζ2)[24 + ζ2(λ2 − 12)]

,

Ẽ′
1112 = Ẽ′

2212 = 0 . (41)

In the principal reference system e′1–e′2 given by an anticlockwise rotation θ̂0, the unit cell
appears as shown in Fig. 11.

Figure 11: The unit cell corresponding to one of the principal reference systems, in which the material
shown in Fig. 10 appears to be cubic, eqs. (41).

The dependence of the components (39) on the size ζ of the rigid inclusion can be
better analyzed in Fig. 12, where λ = 20.

At increasing ζ, the components Ẽ1111 = Ẽ2222 exhibit an initial local maximum, fol-
lowed by a minimum P (located at ζ ≈ 0.36) and subsequently blow-up. This behaviour is
the result of different effects: when the rigid inclusion is very small, the elastic beams are
practically aligned parallel to each other so that they provide the maximum axial stiffness.
At increasing ζ, the not-negligible distance ζℓ/

√
2 between the elastic beams generates a

moment acting on the square inclusion, which represents an element of compliance inside
the cell, leading the homogenized stiffness to drop. Finally, when the dimension of the
rigid elements tends to occupy all the area of the unit cell, the stiffness diverges to infinity.

The other components, reported in Fig. 12 on the left, simply increase or decrease
following ζ.
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Figure 12: Components of the elasticity tensor, eq. (39), for the chiral grid shown in Fig. 10 as functions
of the size of the square rigid inclusion ζ ∈ [0, 1].

Note that the components Ẽ2212 and Ẽ1112 present in eq. (39)5 are identical, except
for their sign. They are related to the Lekhnitskii coefficients of mutual influence, which
depend on the clockwise/counterclockwise direction of the chirality in the unit cell. All
the engineering constants are reported in Table 3.

Orientation of
chirality

Ẽ1 = Ẽ2
12
√
2(ζ +

√
2− ζ2)

(1− ζ2)[24 + ζ2(λ2 − 12)]

12
√
2(ζ +

√
2− ζ2)

(1− ζ2)[24 + ζ2(λ2 − 12)]

G̃12
6
√
2(ζ +

√
2− ζ2)

(1− ζ2)[2λ2 − ζ2(λ2 − 12)]

6
√
2(ζ +

√
2− ζ2)

(1− ζ2)[2λ2 − ζ2(λ2 − 12)]

ν12 = ν21 0 0

η1,12 = −η2,12 ζ
√
2− ζ2(λ2 − 12)

2ζ2(λ2 − 12)− 4λ2
−ζ

√
2− ζ2(λ2 − 12)

2ζ2(λ2 − 12)− 4λ2

η12,1 = −η12,2 −ζ
√
2− ζ2(λ2 − 12)

ζ2(λ2 − 12) + 24

ζ
√
2− ζ2(λ2 − 12)

ζ2(λ2 − 12) + 24

Table 3: Comparison between the engineering constants for two square lattices with different (clockwise
and counterclockwise) chirality.

Therefore, with the exception of the coefficients of mutual influence, the chirality does
not affect the characteristics of the equivalent elastic material.

The last example of a chiral elastic grid inspired by a Chinese lattice is shown in Fig. 13.
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Figure 13: A chiral lattice is obtained from a rhombus unit cell (with an edge of length ℓ), containing
a hexagonal rigid inclusion with an edge of length ζℓ/2, ζ ∈ [0, 1]. The angle between vectors a1 and
a2 is π/3 independently of the inclusion size ζ. The angle between the vertical direction, e2, and a2 is
γ = arccos(

√
3ζ/2).

The unit cell, of rhombus shape, contains a rigid hexagonal element with edges of length
ζℓ.

In this case, the slenderness of elastic beams is defined as

λ =
1

2
ℓ
(√

4− 3ζ2 − ζ
)√

A

I
. (42)

The homogenization procedure returns an isotropic material, as chirality does not influence
it (first-order). The equivalent material is characterized by the following non-vanishing
components of the elasticity tensor (divided by EA/ℓ)

Ẽ1111 = Ẽ2222 =

√
3
(
ζ +

√
4− 3ζ2

)
[48(λ2 + 4) + ζ2(λ4 − 144)]

8λ2(1− ζ2)[ζ2(λ2 − 12) + 16]
,

Ẽ1122 =

√
3
(
ζ +

√
4− 3ζ2

)
[ζ2(12 + λ2)− 16](12− λ2)

8λ2(1− ζ2)[ζ2(λ2 − 12) + 16]
,

Ẽ1212 =

√
3
(
ζ +

√
4− 3ζ2

)
(12 + λ2)

8λ2(1− ζ2)
. (43)

Being the equivalent elastic material isotropic, the (dimensionless) engineering constants
can be evaluated as

Ẽ =
16
√
3
(
ζ +

√
4− 3ζ2

)
(12 + λ2)

(1− ζ2)[48(λ2 + 4) + ζ2(λ4 − 144)]
, G̃ =

√
3
(
ζ +

√
4− 3ζ2

)
(12 + λ2)

8λ2(1− ζ2)
,

ν =
64λ2

48(λ2 + 4) + ζ2(λ4 − 144)
− 1 . (44)

The Young’s modulus and the shear modulus are reported in Fig. 14 on the left as functions
of ζ obtained with λ = 20. Both of them diverge for ζ → 1 but, while the shear modulus
is just a monotonously increasingly function of ζ, the Young’s modulus initially increases
to reach a local maximum, subsequently decreases to reach a minimum at ζ ≈ 0.671953
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and finally blows up. In the same way, the similar behaviour found for the chiral unit cell
shown in Fig. 12 can be explained.

The Poisson’s ratio is reported in Fig. 14 on the right as a function of ζ. At increasing
ζ, the Poisson’s ratio starts from a positive value to become negative at ζ > 0.2, so that an
auxetic behavior is found. This is related to the fact that, at high values of ζ, the rotation
of the rigid hexagons leads to a marked transverse displacement.
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ζ

Ẽ

G̃

0 0.2 0.4 0.6 0.8 1

−1

−0.5
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0.5

1

A

B

ζ

ν

Figure 14: Young and shear moduli and Poisson’s ratio, eq. (44), for the chiral grid shown in Fig. 13 as
functions of the size of the hexagonal rigid inclusion ζ ∈ [0, 1] with λ = 20.

For two different sizes of the hexagonal rigid inclusion (denoted as A, ζ = 0.1, and
B, ζ = 0.6, in Fig. 14), the respective deformed lattices, obtained through the imposition
of an overall uniaxial stress aligned parallel to the horizontal direction, are reported in
Fig. 15. Lower values of ζ allow for an axial stiffness higher than the shearing stiffness,
because the elastic beams are almost aligned parallel to each other. At higher values of ζ,
the inclusions are subject to a not-negligible moment, so that they constitute an element
of compliance, as the axial stiffness decreases and the homogenized material starts to show
auxeticy.

Figure 15: Deformed chiral lattice (with hexagonal rigid inclusions), subject to a uniaxial stress aligned
parallel to the horizontal direction. Small- (ζ = 0.1, upper part) and large- (ζ = 0.6, lower part) size
inclusions. The undeformed configuration is reported grey in the background.
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Figure 16: A lattice is obtained from a rectangular unit cell l1 × l2, containing four rigid rods of length
(ζl1/2)

√
1 + ξ2 with ζ ∈ [0, 1].

3.4 Influence of the connection between rigid and deformable elements

The effects of hinged connections between rigid and deformable elements are now in-
vestigated. To this purpose, the unit cell in Fig. 4 is reconsidered with α = π/2, but
now the parallelogrammic rigid inclusion is replaced by four distinct rigid rods of length
(ζl1/2)

√
1 + ξ2 (with ξ = l1/l2), which are hinged to the elastic beams, as represented

on the left of Fig. 16. The area of the unit cell is l1 × l2, and the variation of ζ ∈ [0, 1]
‘shifts’ the attaching points of the rigid rods along the elastic beams. The dimensionless
parameters defining such a unit cell read as

λ1 = l1(1− ζ)

√
A1

I1
, λ2 = l2(1− ζ)

√
A2

I2
, χ = A2/A1 , (45)

whereas the slendernesses λ1 and λ2 have been made to depend on ζ to facilitate com-
parison with the expressions (27)1−2. For a straightforward interpretation of the following
analytical results, the cross-sectional areas of the elastic beams are assumed to be equal,
A2 = A1 = A.

The hinged connection displays an interesting feature, namely, that the elastic rods
comprised inside the hinged rhomboidal element can still deform. This feature will be
shown to have interesting consequences.

The homogenization procedure applied to the grid shown in Fig. 16 returns an elasticity
tensor belonging to the rectangular symmetry group

Ẽ1111 Ẽ1122 Ẽ1112

· Ẽ2222 Ẽ2212

· · Ẽ1212

 =



ξ3(1− ζ) + 1

ξ(1 + ξ3)(1− ζ)

ξζ

(1 + ξ3)(1− ζ)
0

· ξ3 + 1− ζ

(1 + ξ3)(1− ζ)
0

· · 48

(λ2
1ξ + λ2

2)(4− ζ)


. (46)

The investigation is compared with the ‘clamped’ version of the grid, shown in Fig. 4
(α = π/2). The engineering constants relative to these two lattices are reported in Table 4.
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Unit cell

Ẽ1
1 + ξ3

ξ(ξ3 + 1− ζ)

1

ξ(1− ζ)

Ẽ2
1 + ξ3

ξ3(1− ζ) + 1

1

1− ζ

G̃12
48

(λ2
1ξ + λ2

2)(4− ζ)

12

(λ2
1ξ + λ2

2)(1− ζ)

ν12
ζξ

ξ3 + 1− ζ
0

ν21
ζξ2

ξ3(1− ζ) + 1
0

Table 4: Engineering constants referred to the same rectangular unit cell containing four rigid rods. The
latter are constrained to the elastic beams through hinges (left, as in Fig. 16) and through clamps (right,
as in Fig. 4).

The Young Ẽ1 and shear G̃12 moduli are plotted in the upper part of Fig. 17 as functions
of ζ with λ1 = λ2 = 20 and ξ = 2/3. The values at ζ = 0 (denoting the absence of rigid
inclusions) coincide for the two lattices. Both of them become stiffer at increasing ζ: the
moduli Ẽ1 and G̃12 of the clamped case grow rapidly and diverge when ζ → 1, because
the unit cell becomes totally constrained. The moduli in the hinged case always assume
finite values, because the lattice provides an elastic response even in the limit ζ → 1. As
expected, the magnitude of axial as well as shearing stiffness is higher in the clamped
case because of the stronger constraint. The ratio Ẽ2/Ẽ1 is plotted in Fig. 17c, where
the behaviour is quite different for the two cases. When the rigid rods are all clamped,
Ẽ2/Ẽ1 = ξ independently of ζ. Otherwise, in the hinged case, when ζ increases, the ratio
Ẽ2/Ẽ1 decreases until the minimum at ζ = 1 is reached.

The Poisson’s ratios are not null only in the case of hinged connections, because the
elastic rods can change their relative internal angles in agreement with the expansion or
contraction of the lattice. The extreme values at the boundary of the domain are

ν12(ζ = 0) = 0 , ν21(ζ = 0) = 0 , and ν12(ζ = 1) =
1

ξ2
, ν21(ζ = 1) = ξ2 . (47)

Functions ν12(ζ) and ν21(ζ) are monotonically increasing, so that they are maximized at
ζ = 1. Moreover, the maximum values depend on the aspect ratio ξ and do not present an
upper limit. The Poisson’s ratios are reported in Fig. 17d as functions of the parameter ζ.

The lattice with hinged connections is represented in Fig. 18, when subject to a hori-
zontal uniaxial stress (on the left) and a pure shear stress (on the right). Because of the
non-vanishing Poisson’s ratios, the axial stress deforms the rhombic-shaped elements. In
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Figure 17: Engineering constants for the two rectangular lattices, with clamped and hinged connections,
plotted as functions of parameter ζ with λ1 = λ2 = 20 and ξ = 2/3.

the case of the shear stress, rhombic-shaped elements remain almost undeformed. This be-
haviour is correlated with the almost flat shape of G̃12(ζ) (see Fig. 17b): since the shearing
stiffness is insensitive to the parameter ζ, the hinged rigid rods tend to be not involved in
this type of stress application.

4 Conclusions

A quasi-static technique for the determination of an elastic continuum equivalent to a
periodic grid of elastic beams has been enhanced with the inclusion of rigid elements inside
the grid. Even with the presence of the latter elements, the presented homogenization
scheme has been shown to lead to analytic determination of the elasticity tensor. A number
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Figure 18: Uniaxial stress (left) and pure shear (right) of a rectangular lattice with hinged rigid ele-
ments, forming rhombic-shaped figures. The uniaxial stress shows a strong Poisson’s effect related to the
deformation occurring inside the rhombic-shaped elements, while undeformed beams are visible inside the
rhombic-shaped elements when the grid is subject to shear. Parameters ζ = 0.5 and λ1 = λ2 = 20 have
been selected.

of effects related to the presence of rigid inclusions have been found, including auxeticy
and singular behaviour in the rigidity limit. When rigid element are connected to elastic
rods with hinges, it is shown that beams contained inside a zone surrounded by rigid bars
can still deform and influence the overall mechanical response.

The presented formulation makes available analytical expressions for the characteriza-
tion of elastic solids equivalent to architected materials. Therefore, our results can be used
as design tools for new materials based on microstructures.
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