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Abstract

This study investigates the impact of sliders – constraints acting on elastic rods allowing for
a transverse displacement jump while maintaining axial and rotational displacement continuity
– on the dynamics of a periodic elastic grid, including the effects of axial preload. The grid is
linearly elastic and subject to in-plane incremental deformation, involving normal and shear forces
and bending moment. The periodicity of the infinite grid permits a Floquet-Bloch wave analysis
and a rigorous dynamic homogenization, leading to an equivalent prestressed elastic solid. The
investigation is complemented by ad hoc developed F.E. simulations and perturbations with a
pulsating Green’s function. Results show that the sliders create band gaps, flat bands, and Dirac
cones in the dispersion diagrams and generate macro-instability even for tensile prestress. The
latter corresponds to the loss of ellipticity at the parabolic boundary in the equivalent elastic
solid and provides a rare example of an almost unexplored form of material instability. Therefore,
our results offer design strategies for metamaterials and architected materials showing reversible
material instabilities and filtering properties for mechanical signals.

Keywords Metamaterials · Floqet-Bloch analysis · Shear bands · Ellipticity loss · Material insta-
bilities

1 Introduction
Slider constraints implement transverse compliance (at the same time, maintaining continuity of
axial displacement and rotation) in Euler-Bernoulli or Rayleigh rods, which are otherwise unshearable.
Breaking unshearability leads to strong effects on structural mechanics, for instance, introduces tensile
buckling in slender rods [1]. Architected materials, designed as a grid of axially preloaded elastic
rods with sliders, were homogenized to obtain the response of an equivalent prestressed material
[2]. The equivalent material was shown to possess a completely bounded stability domain, while
unboundedness for tensile prestresses always occurs when sliders are absent [3]. Therefore, the use
of sliders yields an elastic metamaterial which ‘fails’ (i.e. develops shear bands, instead of breaking
bonds as in [4]) for every load path, while ‘integrity’ may be recovered by simply unloading.

Although many results have been obtained, the investigation into the mechanical effects of sliders
is far from concluded, so that important effects may still have to be discovered. The present article
contributes in this direction by analyzing the dynamics of a periodic grid of axially-preloaded elastic
rods, each jointed at mid-span with a slider, Fig. 1.

Dispersion surfaces are obtained through a Bloch-Floquet wave analysis, revealing band gaps, flat
bands, and Dirac cones. Here, the sliders lead to the emergence of twin band gaps and localize the
propagation in a direction parallel to the sliding direction when the stiffness of the sliders tends to
vanish, so that a ‘floppy mode’ is introduced in the kinematics. The analysis is complemented with
F.E. simulations (of a portion of grid ad hoc implemented with a PML boundary), to be contrasted
with results obtained using a Green’s function perturbation technique (see [5]), applied to an infinite
body made up of the prestressed elastic material equivalent (through rigorous low-frequency, long-
wavelength dynamic homogenization [6–9]) to the elastic grid. When macroscopic bifurcation occurs,
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Figure 1: A grid of elastic and axially-preloaded rods, jointed through sliding constraints, provides an example of a
metamaterial with a bounded stability domain (thus buckling even in tension). The fact that tensile preload may be
applied precludes out-of-plane instabilities, so that the material can be used for structural membranes. In dynamics,
the grid shows multiple band gaps, flat bands, and Dirac cones, while its equivalent homogeneous material provides
an uncommon example of a material losing ellipticity at the parabolic boundary, thus evidencing ‘stress channelling’,
corresponding to shear bands parallel (orthogonal) to the direction of the tensile (compressive) applied preload, P1 and
P2.

corresponding to loss of ellipticity in the equivalent material [10–12], shear band formation is observed
in both the lattice structure and the equivalent material. The analyses reveal that the architected
material designed in the present article loses ellipticity at the elliptic/parabolic boundary through
the formation of shear bands aligned parallel (orthogonal) to the direction of the applied tension
(compression). Materials behaving in this way were discovered by Pipkin [13], who showed that they
display ‘stress channelling’. They are useful to localize signals, but are extremely rare (one example
being that illustrated in [14]), so that a new design strategy towards these materials is introduced
in this article. In particular, it is shown that the use of sliders permits a strong wave localization,
tunable by prestress, which opens new routes to metamaterials for mechanical wave control. The
fact that a tensile prestress may be applied, leading to in-plane tensile instabilities, implies that the
grid analyzed in the present article can effectively be used in practice, because the possibility of
out-of-plane buckling is ruled out.

2 In-plane Floquet–Bloch waves in a grid of preloaded elastic
rods equipped with sliders

A two-dimensional periodic lattice of elastic rods is considered, in-plane deformable, both axially
and flexurally, in which all structural members are axially preloaded from an unloaded reference
configuration, Fig. 2. Two types of nodes connect the rods, one imposing continuity of displacement
components and rotations (clamped nodes C3, C4, and C5 in the figure), while the other (slider nodes
S1 and S2 in the figure) allows a jump in transverse displacement. The latter is linearly related
to the shear force transmitted across the node, so that the constraint represents a slider equipped
with a linear transverse spring. The springs inside the sliders are introduced to prevent rigid-body
deformation modes (called ‘floppy’). The preload may be produced by tensile or compressive dead
loading acting at infinity, while body forces in the lattice are not considered for simplicity. The
preload is postulated not only to satisfy equilibrium but also to preserve periodicity and leave the
structure initially free from flexure. The incremental response is analyzed by considering arbitrary
deformations, which include the development of bending moment and axial and shear forces.

The preloaded configuration, assumed as a reference in an updated Lagrangian description, is
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Figure 2: Left: a rectangular lattice of axially-preloaded rods, endowed with sliding constraints, realizes an architected
material capable of losing ellipticity under both tensile and compressive loadings. Linear springs are introduced to stiffen
the sliders, thus preventing the occurrence of ‘floppy modes’. Right: the unit cell with two sliders.

periodic along two linearly independent vectors {a1,a2}, defining the direct basis of the lattice, so
that the structure can be constructed from a single unit cell C, assumed to be composed of NB
(equal to 4 in the present examples, Fig. 2 right part) elastic rods, including Rayleigh rotational
inertial effects. Each rod is characterized by length l, mass density ρ, Young modulus E, cross-
section area A and second moment of inertia I. The stiffness of the linear spring embedded inside
the sliders is denoted by ks. The equations governing the time-harmonic (in-plane) response with
circular frequency ω of a grid of elastic rods were obtained in [3] and are now complemented with the
slider constraints as implemented in [2]. The equations governing the time-harmonic dynamics of an
elastic unshearable rod are

EA
∂ 2u(s)

∂s 2
+ ρAω2u(s) = 0, EI

∂ 4v(s)

∂s 4
−
(
P − ρI ω2

) ∂ 2v(s)

∂s 2
− ρAω2v(s) = 0, (1)

where P is the axial prestress (positive when tensile). Equations (1) admit the solutions

u(s) =

2∑
j=1

Cu
j ei β

u
j s , v(s) =

4∑
j=1

Cv
j ei β

v
j s , (2)

where {Cu
1 , C

u
2 , C

v
1 , ..., C

v
4} are 6 arbitrary complex constants and the characteristic roots βu

j and βv
j

are given by

βu
1,2 = ±Ω

l
, βv

1,2,3,4 = ± 1

l
√
2

√
−p+Ω2 ±

√
p2 + (4λ2 − 2 p)Ω2 +Ω4 ,

Ω = ωl

√
ρ

E
, p =

Pl2

EI
, λ = l

√
A

I
, (3)

where p is a dimensionless measure of the prestress and λ is the slenderness of the rod. The constants
appearing in equation (2) can be expressed as functions of the generalized (including rotations)
displacements at the ends of the rod.

Reference is made to a periodic material, characterized by a unit cell, where continuity of dis-
placement and rotation are to be imposed at all nodes joining with perfect bonding the elastic rods.
At the nodes where a slider is present, the continuity conditions only involve axial displacement and
rotation. In the case shown in Fig. 2 on the right, internal nodes are not present and the rectangular
cell is characterized by the dimensionless ratios

λi = li

√
Ai

Ii
, κi =

ks,i l
3
i

EIi
, pi =

Pil
2
i

EIi
, ξ = l2/l1 , χ = A2/A1 , Ω = ωl1

√
ρ1
E

, (4)

where the index i identifies the rods aligned parallel to the horizontal, i = 1, and vertical, i = 2,
directions. Moreover, the boundary nodes are subject to the Floquet-Bloch boundary conditions,
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based on the notion of Bloch wave vector

k = k1e1 + k2e2 , (5)

so that the generalized (which include rotations) displacements u at point x satisfy

u(x+ n1a1 + n2a2) = u(x) eik·(n1a1+n2a2) , (6)

where n1 and n2 are positive and negative integers (including 0), a1 = l1e1, and a2 = l2e2.
Enforcing the Floquet-Bloch conditions at the boundary nodes of the unit cell leads to an algebraic

homogeneous linear system, which governs the wave propagation as the solution of

A(Ω,K, λ1, λ2, ξ, χ, κ1, κ2, p1, p2) q = 0 , (7)

where, in the case of the structure shown in Fig. 2, A is a 11×11 complex matrix, function of the
dimensionless angular frequency Ω, the dimensionless wave vector K = k1l1e1+k2l2e2 and parameters
(4). The vector q collects the 11 degrees of freedom (displacements and rotations of the joints) of the
unit cell. Specifically, the vector gathering the degrees of freedom is composed as follows

u1, v
Left
1 , vRight

1 , θ1, in the slider S1 ,

uDown
2 , uUp

2 , v2, θ2, in the slider S2 ,
u3, v3, θ3, in the clamp C3 .

(8)

Furthermore, Floquet-Bloch conditions assume the form

{u4, v4, θ4} = {u3, v3, θ3} exp(ik · a1), between nodes C4 and C3 ,
{u5, v5, θ5} = {u3, v3, θ3} exp(ik · a2), between nodes C5 and C3 .

(9)

Non-trivial solutions of system (7) are found when the matrix A is rank-deficient

detA(Ω,K, λ1, λ2, ξ, χ, κ1, κ2, p1, p2) = 0 , (10)

which represents the dispersion equation, implicitly defining the relation between the angular fre-
quency Ω and the wave vector K, the so-called dispersion relation. Furthermore, for each point of
the {Ω,K}-space satisfying Eq. (10), the corresponding eigenvector q(Ω,K) can be computed from
Eq. (7). Hence, the propagation of Floquet-Bloch waves is governed by the generalized eigenvalue
problem (7), where the eigenfrequencies are determined by the dispersion relation Ω(K), periodic with
period [0, 2π]× [0, 2π], and the eigenmodes (or waveforms) are defined by the eigenvectors q(Ω,K).

Dispersion surfaces are provided in the following for the Rayleigh lattices, with an emphasis on
the effects of both sliders and preload. To this end, all the geometric parameters of the grid are fixed,
and a square lattice, ξ = 1, made up of rods of equal characteristics, χ = 1, and λ1 = λ2 = 15, is
considered. The effect of the slider stiffnesses κi, assumed equal for simplicity κ = κ1 = κ2 and of
the preload pi is investigated. To highlight the interplay between sliders and preload, the dynamic
responses of the lattice with and without preload are separately analyzed.

3 Lattice without preload

3.1 Dispersion properties of Bloch waves
The preload is now neglected, p1 = p2 = 0, so that only the influence of the sliders on the lattice
dynamics is investigated. The stiffness of the sliders, assumed to be the same in the horizontal and
vertical directions κ = κ1 = κ2, ranges from a low value κ = 10−2 up to an extreme value κ = 108,
for which the response of the lattice reduces to that of a perfectly jointed square lattice, in other
words without sliders, analyzed in [2].

Dispersion surfaces are shown in Fig. 3 and complemented by the band diagrams reported in
Fig. 4, relative to the path Γ–X–Y –Γ shown in the former figure. The latter figure allows the
appreciation of details that would remain undetected from the dispersion surfaces. In particular, the
result reported in Fig. 4a, pertaining to the case in which the slider stiffness is so high that the rods
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Figure 3: Dispersion surfaces of a squared grid of Rayleigh rods with slenderness λ = 15, without preload. Different
values of the stiffness of the sliders are used κ = 108, 100, 25, 10, 1, 10−2. The case κ = 108 is reported as a reference
because the stiffness of the sliders is so high that they do not have any effect and the behaviour of the grid is the same
as in the absence of sliders. The path Γ–X–Y –Z–Γ reported in red represents the first Brillouin zone. In the following
dispersion curves are plotted along the triangular path Γ–X–Y –Γ (for the lattice without preload, which possesses
square symmetry) or along the squared path Γ–X–Y –Z–Γ (for the lattice with unequal preload, which possesses
orthotropic symmetry).

result fully connected (case already analyzed in [2]), is used as reference. The dispersion diagrams
show that, at sufficiently high slider stiffness, the presence of the sliders only affects the vibrational
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response of the lattice in the high-frequency regime, whereas the acoustic curves result weakly altered.
Conversely, changes are limited to low frequencies Ω at small stiffness of the sliders. In this case, at
low frequencies, the reduction of the slider stiffness induces a decrease in the slope of the acoustic
branches. This is pronounced for the acoustic curve that characterizes the propagation of shear waves,
while pressure waves are less influenced by a change in the slider stiffness. For extremely low values
of κ, the slope of the acoustic curve, responsible for the propagation of the shear waves, tends to zero
along the two axes K1 and K2, while the dispersion surface does not touch zero everywhere, as shown
in Fig. 3. Another peculiarity of the elastic grid is the lowering of the second and third dispersion
surfaces as κ is reduced. When the slider stiffness tends to zero, the third dispersion surface touches
the origin, so that now three dispersion surfaces emanate from the origin, instead of the usual two.

An infinite set of standing waves propagating at the same frequency with an arbitrary wave vector
can be produced through the tuning of the stiffness of the sliders. Indeed, for a stiffness κ = 10, an
almost flat surface becomes visible in Fig. 4d, induced by the flattening of the third dispersion surface.
Another interesting effect introduced by the sliders can be noticed at high frequency, where an opening
of two band gaps is observed, Fig. 4b.

Band gaps are not present in the absence of sliders (Fig. 4a), but when the slider stiffness reduces,
a first band gap, around the frequency Ω = 3, appears and remains almost unaltered as κ tends to
zero. A second band gap, visible around Ω = 5, appears, so that ‘twin band gaps’ are present. The
second band gap enlarges as the slider stiffness reduces until a critical value is reached, after which
this band gap begins to shrink and eventually disappears, Fig. 4c–f.

(a) (b) (c)

(d) (e) (f)

Figure 4: Dispersion curves for a square grid of elastic rods without preload, for different values of the slider stiffness
κ = 108, 100, 25, 10, 1, 10−2. The diagrams have been evaluated along the boundary of the first irreducible Brillouin
zone (path Γ–X–Y –Γ sketched in Fig. 3). The relative band gaps are highlighted in figures b-f. ‘Twin band gaps’ are
visible in panel b.

3.2 Forced vibration
The relation between the dynamic response of a grid of Rayleigh rods and the Floquet-Bloch analysis
performed in the previous section can be investigated through the analysis of the vibrations induced
by a time-harmonic source (a concentrated force or moment) in a lattice of infinite extent. To this
purpose, a grid of rods is numerically analyzed using the Comsol Multiphysics® F.E. program in the
frequency response mode. A square finite-size computational window with (N − 1)×(N − 1) unit
cells is considered, where N = 161 is the number of nodes assumed in each direction. The window
is bounded with a perfectly matched layer (PML), to simulate the response of an infinite lattice. In
fact, by tuning the damping in the boundary layers, the outgoing waves can be completely absorbed,
so that reflection is not generated in the interior domain.
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A concentrated time-harmonic source is applied (in-plane) to the central junction (C3 in Fig. 2),
pulsating with a dimensionless angular frequency Ω. For a given loading and a given dimensionless
angular frequency Ω, the complex displacement field, with horizontal and vertical components

u = uR + iuI , v = vR + ivI , (11)

is computed. The results are plotted in terms of the displacement amplitude associated with the real
parts,

δR(x, y,Ω) =
√
u2
R + v2R , (12)

while the displacement amplitude associated with the imaginary parts,

δI(x, y,Ω) =
√
u2
I + v2I , (13)

is omitted for conciseness.

Low frequency regime The elastic grid is forced by a horizontal force, pulsating at the low angular
frequency Ω = 0.05. Results in terms of displacement amplitude δR are reported in Fig. 5, where
different values of the slider stiffness κ are investigated.

Figure 5: Maps of displacement amplitude (obtained through f.e. analyses) for different stiffness of the sliders
κ = {108, 1, 10−2} of a grid of Rayleigh rods (without preload). The latter is excited by a time-harmonic concentrated
force (aligned parallel to the horizontal direction) vibrating at low frequency, Ω = 0.05. When the slider stiffness
becomes vanishing small a strong localization of the signal is observed, visible on the right.

At these frequencies, two dispersion surfaces are always intersected. In the long-wavelength regime,
at a very low value of the slider stiffness, κ = 10−2 Fig. 5 on the right, the dynamic response exhibits
a strong localization along the directions of the applied load, because the compliance of the sliders
does not allow the propagation of waves through the adjacent (horizontal) rows of rods. In other
words, the horizontal wave localization can be viewed in terms of the response of the elastic material
equivalent to the grid which loses ellipticity when the stiffness of the sliders is approaching zero.

This transmission becomes possible when the slider stiffness is increased, so that shear waves
are allowed to propagate throughout the whole lattice, Fig. 5 on the centre. At the highest value
of slider stiffness, the rods are perfectly jointed, so that the response of a square lattice without
sliders is obtained, Fig. 5 on the left. The growth of the wavelength with the increase of the slider
stiffness can be deduced from the dispersion curves reported in Fig. 4, where high values of the slider
stiffness increase the slope of the acoustic curve, responsible for shear wave propagation. Therefore,
the modulus of the wave vector K reduces, and consequently, wave fronts are more distant.

Band gaps An analysis of the dispersion curves in Figs. 4 reveals that twin band gaps are present
in the range of analyzed frequencies. The first band gap, at low frequency, is not present when the
rods result perfectly jointed (κ = 108), but it appears when the stiffness of the sliders is reduced,
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κ = 100 and 1. The response of the lattice is shown in Fig. 6 at the frequency Ω = 3 and in Fig. 7
at the frequency Ω = 5.1. The former frequency is internal to the band gap at low frequency for
κ = {100, 1}, while the latter is internal to the band gap at high frequency, for κ = 100. The
perfectly jointed rod case is also reported for comparison, κ = 108, where no band gap is present.
The figure shows that the behaviour of the forced lattice confirms the dynamic response predicted by
the dispersion curves. Differently from the first band gap, the latter is present for a limited interval

Figure 6: As for Fig. 5, except that the frequency Ω = 3.0 is investigated for κ = {108, 100, 1}. The selected frequency
falls within the low-frequency band gap of Fig. 4 for κ = 100 and 1, so propagation is here suppressed.

Figure 7: As for Fig. 6, except that the vibration frequency, Ω = 5.1, is internal to the high frequency band gap
visible in Fig. 4 at κ = 100. Here propagation is suppressed. Decreasing the stiffeness of the sliders to κ = 25, the
high-frequency-band gap closes and propagation is again possible.

of values of the slider stiffness. The band gap vanishes for κ = 25, as visible in the right panel of
Fig. 7.

‘Quasi-overdetermined’ lattice In the limit, when the slider stiffness vanishes, the grid is sus-
ceptible to non-trivial rigid-body motions (translations aligned parallel to the sliders), so that the
system of equations governing the statics of the grid becomes overdetermined. The analysis of a case
near this limit, in which the slider stiffness is very low, κ = 0.01, is interesting. It will be referred to
as ‘quasi-overdetermined’ and can be viewed as a loss of ellipticity at vanishing slider stiffness of the
equivalent elastic material obtained through homogenization.

When their stiffness becomes low, sliders can transmit with difficulty a signal when the lattice
is forced in a direction aligned parallel to them, as confirmed in Fig. 8 for Ω = 0.05 and 0.5, where
the propagation is highly localized. This is typical of the low-frequency regime, close to the origin
Ω = 0. Differently, at sufficiently high frequency, Ω = 1, the propagation of a signal is not excluded,
as foreseen by the dispersion curves. The situation is also illustrated in Fig. 9, which reports details
of Fig. 8 (so magnified that the grid of rods becomes visible) cut near the point of application of the
pulsatile force.
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Figure 8: Vibrations of a ‘quasi-overdetermined’ grid of Rayleigh rods, characterized by a low slider stiffness κ1 =
κ2 = 0.01, in the absence of preload and excited by a time-harmonic horizontal force pulsating at different frequencies.
The displacement field is strongly localized at low frequencies Ω = 0.05 and 0.5, as the effect of the low compliance of
the sliders, while at high frequency, Ω = 1, the wave spreads to the entire lattice.

Figure 9: Details of Fig. 8 showing localization of the vibrational displacement, in the proximity of the row where the
load is applied at Ω = 0.05 and 0.5, while at high frequency Ω = 1, waves spread through the ‘quasi-overdetermined’
grid of rods, characterized by small slider stiffness κ1 = κ2 = 0.01.

Fig. 9 shows the influence of the inertia on the dynamic response of the lattice. A horizontal
translation of the row where the load is applied and of the connected vertical rods is visible for
Ω = 0.05, where bending is negligible, so that the rotation transmitted by the sliders is small.
Consequently, the signal is strongly localized. Increasing the frequency to Ω = 0.5 and Ω = 1, the
inertia of the rods induces their bending, so the rotation of the sliders propagates the signal in the
whole grid.

The response of the grid to a concentrated moment (applied at the central node of the grid) is
investigated in Fig. 10. In this case, bending of the rods is induced at all frequencies, even low ones,
so that a circular pattern is observed. This pattern is present until Ω = 0.5 is reached, while at higher
frequencies the propagation of the signal changes, so that it becomes oriented almost parallel to the
axes of the grid. The behaviour of the grid under an applied moment is in stark contrast with the
applied force (see Figs. 8 and 9) because the moment excites waves propagating in every direction.
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Figure 10: A concentrated moment applied at the centre of a ‘quasi-overdetermined’ grid, κ1 = κ2 = 0.01, (without
preload) leads to propagation in the whole lattice at all frequencies. The effects of an applied pulsatile moment contrast
with those related to the application of a pulsatile force, see Fig. 8. In fact, now waves propagate in every direction.

4 Preloaded lattice: dispersion properties, forced vibration
and ‘macro’ bifurcation

The investigation of the stability of the grid includes the preload of the rods. Lattice bifurcations
can exhibit deformation modes in the grid of rods with various wavelengths, and they are controlled
by the value of the preload state. A ‘global’ or ‘macro’ bifurcation occurs in the limit of infinite
wavelength; otherwise, the bifurcation is referred to as ‘microscopic’. Only the macro (or global)
instability can be associated with the failure of ellipticity of the equivalent elastic prestressed solid,
which involves the appearance of an abrupt localization of the deformation within the lattice. The
latter is known as ‘shear band mode’ and represents in the lattice the analogue of a jump in the
incremental strain in the equivalent solid. It is important to note how the tunability of the slider
stiffness and preload enables the characteristics of the grid to control the occurrence of shear bands.

The analyses which follow are complemented by the relations between the grid and its homogenized
response in terms of an elastic equivalent continuum. The homogenization scheme was derived in [2,
3] and is not repeated here. It was shown in [2] that the incremental response of the preloaded grid
of elastic rods can be homogenized to become the incremental response of a prestressed elastic solid.

The preload of components p1 and p2 is transformed into a Cauchy prestress of components T11

and T22,

T11 =
P1

l2
=

EA1

l1

p1
λ2
1ξ

, T22 =
P2

l1
=

EA1

l1

p2χ

λ2
2

, (14)

affecting the response of an equivalent elastic material defined by a fourth-order tensor, function of
the slider stiffness, the grid stiffness and its geometry.

A macro bifurcation in the grid corresponds to a loss of ellipticity in the continuum, while micro
bifurcations leave the equivalent solid unaffected. When the stability domain of the grid does not in-
clude micro bifurcations, the correspondence between the grid and the equivalent continuum becomes
perfect.

Failure of ellipticity occurs in a solid when the speed of an acceleration wave vanishes, a condition
represented by an eigenvalue of the acoustic tensor becoming null. The direction nE for which
the acoustic tensor (reported in Appendix A for the case under study) becomes singular, and the
respective eigenvector gE represents the normal to the shear band and the shear deformation mode,
respectively.

In the following, two case studies are provided: uniaxial preload in the horizontal direction p2 = 0
and equibiaxial preload, p1 = p2.

4.1 Uniaxial preload p2 = 0

The lattice is subject to an uniaxial preload defined by the axial forces acting in the horizontal
direction (p2 = 0).
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The stability domain inside which global bifurcations do not occur is obtained in the p1–p2 space
as shown in [2]. The grid and the preload satisfy orthotropy and in the case under analysis orthotropy
reduces to cubic symmetry when the grid is unloaded. Therefore, the stability domain is symmetric
with respect to the equibiaxial loading axis, p1 = p2 (analyzed in the next subsection).

Macro bifurcations, corresponding to the formation of shear band modes appear on the boundary
of the domain, aligned parallel (orthogonal) to the loading direction for tension (for compression).
Due to the presence of the sliders, the stability domain of the lattice is bounded both in compression
and in tension and tends to become unbounded in tension when the stiffness of the sliders increases.

For three distinct values of slider stiffness κ, the preload component p1, which causes a macro
bifurcation, is listed in Table 1, with p−1E and p+1E denoting the negative and positive critical preloads,
respectively.

Critical values of uniaxial preload p2 = 0 for macro bifurcation

Slider stiffness κ Compressive critical prestress p−1E Tensile critical prestress p+1E

1 −0.538088 0.929147
10 −2.66810 6.65908
100 −5.01017 34.06669

Table 1: Macro bifurcation occurring in the elastic grid for different slider stiffness κ. Uniaxial preload of the rods is
assumed, p2 = 0.The occurrence of macro bifurcation in the grid coincides with the loss of ellipticity in the equivalent
continuum, where preload becomes equivalent to prestress.

The dynamic response of the structure depends on both the stiffness of the sliders and the preload,
the effect of the latter will be analyzed in the following to assess the stability of the structure assuming
for brevity κ = 100. Under this assumption and for three different values of preload p1, including for
comparison the case of null preload, the dispersion curves are shown in Fig. 11, relative to the path
Γ−X − Y − Z − Γ reported in Fig. 3.

Figure 11: Evolution of the dispersion curves with uniaxial preload (p2 = 0). The slider stiffness is assumed equal
to κ = 100. The curves on the left correspond to the compressive critical preload in Table 1, the ones in the centre
correspond to the grid without preload, and the curves on the right to the grid with tensile critical preload in Table 1.

The grid reaches a macro bifurcation in tension, on the right of the figure, and in compression,
on the left, as predicted in Table 1. When the preload achieves a critical negative or positive value
(in compression or in tension), one of the acoustic surfaces exhibits a null tangent at the origin
of the reciprocal space, denoting propagation of waves with infinite wavelength, that identifies a
macro instability. It is interesting to note that, the alteration in dispersion curve shapes is less
pronounced when the lattice experiences preloading in compression compared to preloading in tension.
In particular, it is possible to notice that twin band gaps persist in compression, while these disappear
in tension.

The dispersion surfaces (upper part of the figure) and the relative slowness contours (lower part
of the figure) at low angular frequency, Ω = 0.01, are reported in Fig. 12 for a grid without preload
(centre) and for a preload level close to the macro instability in compression (left) and in tension
(right).

Infinite-wavelength bifurcations occur at the vanishing slope of the acoustic branches at the origin
of the space {Ω,K}. These tangents are reported in the figure as red lines and represent the response
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Figure 12: Dispersion surfaces (upper part) and slowness contours (lower part) at low frequency Ω = 0.01 for preload
levels near macro bifurcation in compression (left) and tension (right), compared with the case of null preload (centre).
The infinite-wavelength bifurcation occurs at the vanishing slope of one of the acoustic branches at the origin when the
preload reaches the critical values reported in Table 1. Red lines are tangent to the surfaces at the origin and represent
the response of the equivalent continuum.

of the equivalent elastic continuum as obtained through homogenization, which is now recalled from
[2] and applied to the case under study.

Turning now the attention to the loss of ellipticity in the elastic material equivalent to the grid,
the critical pair n1

E and g1
E can be visualized in a polar plot of the square root of the lowest eigenvalue

of the acoustic tensor (of the solid equivalent to the grid) reported in Fig. 13, for two levels of uniaxial
prestress, corresponding to failure or ellipticity in compression p−1E and tension p+1E , both reported
in Table 1. The plot also includes with a dashed grey line the behaviour of the equivalent continuum
without prestress, where ellipticity is preserved.

Owing to the orthotropy inherited from the elastic grid, loss of ellipticity at the parabolic boundary
in the equivalent elastic material occurs with the normal to the shear band n1

E parallel (orthogonal)
to the preload for compression (for tension). The associated eigenvectors g1

E remain orthogonal to
the corresponding normals n1

E , indicating that the modes of localization are pure shear waves, the
so-called ‘shear bands’.

The dynamic response evidenced by the dispersion surfaces and slowness contours (Fig. 12) and
that of the equivalent continuum are confirmed in Figs. 14 and 15, where the behaviour of the grid
(upper parts) is compared with the behaviour of the equivalent continuum (lower parts). Both the
grid and the equivalent continuum are loaded through a pulsating force (applied at the central node,
C3 in Fig. 2), vertical in the former figure, and horizontal in the latter. The behaviour of the grid
is numerically obtained via f.e., while the equivalent continuum is loaded with the Green’s function
obtained in [15], so that an analytical solution is plotted. The low-frequency regime is investigated in
the figures, with the concentrated forces pulsating at the dimensionless angular frequency Ω = 0.01.
The two preload/prestress values 0.999 p−E and 0.99999 p+E are analyzed, see Table 1, while the case
without prestress is included for comparison. Note that to give full evidence to the shear band
formation, the prestress has to be closest to the failure of ellipticity in tension (factor ‘0.99999’) than
in compression (factor ‘0.999’).
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(a) p1 = p−1E = −5.01017, p2 = 0
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(b) p1 = p+1E = 34.066669, p2 = 0
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Figure 13: Polar plots of the square root of the lowest eigenvalue of the acoustic tensor of the solid equivalent to the
elastic grid, as a function of the propagation direction n = cos θ e1 + sin θ e2, for a uniaxial prestress state at failure of
ellipticity in compression (p1 = p−1E = −5.01017) and in tension (p1 = p+1E = 34.06666), see Table 1. The dashed grey
line reports the behaviour of the solid without prestress, where loss of ellipticity does not occur.

Figure 14: Displacement amplitude field during vibrations of a grid of Rayleigh rods with κ = 100, excited by a
vertical time-harmonic force pulsating at frequency Ω = 0.01. The preload in the horizontal rods is applied up to near
the critical values p−1E and p+1E , see Table 1. The plots show shear band formation (left) near ellipticity loss, contrasted
with the elliptic case (where shear bands are excluded, centre) and the other case of loss of ellipticity in tension (where
shear bands do not emerge, right).

Note that the two figures shown in the central columns of Fig. 14 are the same as in the central
column of Fig. 15 but rotated by π/2. This is not true for the other figures, due to the presence of
the prestress, which is always horizontal and breaks the cubic symmetry.
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Figure 15: As for Fig. 14, except that the force is horizontal. Now shear bands appear near the boundary of ellipticity
loss in tension (right), but not in compression (left).

Figs. 14 and 15 show that the behaviour of the prestressed equivalent material perfectly describes
the behaviour of the preloaded grid. The localization in a vertical (in a horizontal) shear band is
evident in Fig. 14 (in Fig. 15) near the boundary of loss of ellipticity in compression p1 = 0.999 p−E (in
tension p1 = 0.99999 p+E). On the contrary, the particularly selected force does not excite localization,
remaining unobserved in Fig. 14 (in Fig. 15) near the boundary of loss of ellipticity in tension p1 =
0.99999 p+E (in compression p1 = 0.999 p−E). It can be concluded that for a vertical (horizontal) force,
the effect of the tensile (compressive) prestress stabilizes both the grid and its equivalent continuum,
so the wavelength of the displacement field increases compared to the case of the lattice without
prestress.

The fact that shear bands occur parallel (orthogonal) to the direction of tensile (of compressive)
prestress denotes the fact that ellipticity is lost at the parabolic boundary, [5]. In this case, the
localization introduces a ‘stress channelling’, as noted by Pipkin [13]. Materials evidencing shear
band formation at this boundary are rare. An example is the Mooney-Rivlin elasticity, but for this
model, ellipticity is lost at infinite strain and is therefore unachievable. Another material showing this
behaviour is the masonry-like composite introduced in [14], but this material is based on unilateral
contacts and does not resist tension. Other possibilities are composites with stiff and parallel fibres,
as preconized in [13]. Therefore, the composite here introduced opens a new way to the design of
these materials.

The behaviour of the grid and its homogenized counterpart (reported in Figs. 14 and 15) can be
better understood by considering Fig. 16. To construct this figure, points have been selected at the
ends of the branches of the slowness contours (two for critical negative prestress of compression, Q1

and Q2, and other two for critical positive prestress of tension, Q3 and Q4) shown in Fig. 12 (lower
part). Points Q1 and Q2 refer to the left parts of Figs. 14 and 15, while points Q3 and Q4 to the right
parts, as indicated by the inset in the figures. For the selected points, the corresponding waveforms
are reported in Fig. 16 for the unit cell (upper part) and for a portion of the grid (central and lower
parts). The upper and central parts of the figure follow from the Floquet-Bloch analysis, while the
lower part of the figure presents the displacement as calculated with f.e. simulations of the grid and
therefore represent details of the upper parts of Figs. 14 and 15 referring to the zone marked in those
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figures.
The point Q1 corresponds to the compressive instability: the propagation of a short-wavelength

shear wave in the horizontal direction is evident; vertical rods translate longitudinally, whereas hori-
zontal rods experience bending; all sliders are inactive.

Points Q2 and Q3 correspond to a stable deformation of the lattice: the propagation of a long-
wavelength shear wave, corresponding to an almost rigid translation of the rods in the horizontal and
vertical directions, respectively; all sliders are inactive.

The point Q4 corresponds to the tensile instability of the lattice: the propagation of a short-
wavelength shear wave in the vertical direction is visible; vertical rods undergo a rigid rotation and
vertical sliders remain inactive, whereas horizontal rods are inflected and consequently horizontal
sliders open. This deformation mode confirms that a tensile instability in the lattice becomes possible
with the activation of the sliders, as demonstrated in [1].

For the grid preloaded in compression, the propagation of the vertical shear waves, point Q1, is
activated when a vertical pulsating force is applied, whereas for the lattice preloaded in tension, the
propagation of the horizontal shear waves, point Q4, is activated by a horizontal pulsating force. In
all four cases analyzed, there is a perfect match between the waveforms of Bloch waves (Fig. 16 central
part) and the displacements of the forced lattice (Fig. 16 lower part). It is worth noticing, that the
Fourier transform of the nodal displacements of the forced lattice, which displays the spectrum of the
plane waves composing the dynamic response, nicely corresponds to the slowness contours obtained
through the Floquet–Bloch analysis. For the four cases considered, the Fourier reconstruction of the
signal is strongly focused around the points Qi, confirming the fact that few plane waves are activated
by the pulsating force. In particular, for the vertical force in compression and the horizontal force in
tension, the spectra of the waves are focused around the directions of ellipticity loss, so that just the
‘slow’ plane waves that are close to causing the ellipticity loss prevail in the response, as it may be
expected for a material near the elliptic boundary.

(a) Point Q1 (b) Point Q2 (c) Point Q3 (d) Point Q4

Figure 16: Selected waveforms for the grid of Rayleigh rods, for negative a-b and positive c-d values of the prestress
p1 near the boundary of ellipticity loss. The points Qi are shown in the slowness contours, Fig. 12 lower part.
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4.2 Equibiaxial preload p1 = p2

The lattice is subject to an equibiaxial preload state, defined by the same values of axial force in
the horizontal and vertical directions p1 = p2. The slider stiffnesses are again set equal to κ = 100.
Occurrence of macro or micro bifurcations in the grid, corresponding to failure of ellipticity in the
equivalent solid, are reported in terms of critical values of preload in Table 2.

Critical values of equibiaxial preload p1 = p2 for macro or micro bifurcations

Slider stiffness κ Compressive critical preload p−E Tensile critical preload p+E

1 −0.687558 (macro bif.) 0.929147 (micro bif.)
10 −2.615260 (macro bif.) 6.659080 (micro bif.)
100 −4.741020 (macro bif.) 34.06669 (micro bif.)

Table 2: Macro or micro bifurcations occurring in the elastic grid respectively in compression and tension, for different
slider stiffness κ. Equibiaxial preload of the rods is assumed p1 = p2. The occurrence of macro bifurcation in the grid
coincides with the loss of ellipticity in the equivalent continuum, where preload becomes equivalent to prestress. Micro
bifurcations remain undetected in the equivalent solid.

The table is analogous to Table 1, except that in that table micro bifurcations are not present.
The two tables share the right column, defining the same level of preload for which in one case a
macro bifurcation occurs, while a micro bifurcation is critical in the other.

Fig. 17 is the counterpart of Fig. 12 and reports the dispersion surfaces (upper part of the figure)
and the relative slowness contours (lower part of the figure) at low angular frequency, Ω = 0.01, for a
grid without preload (centre), for a preload level close to macro instability in compression (left) and
micro instability in tension (right).
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Figure 17: As for Fig. 12, except that the preload is biaxial p1 = p2. Dispersion surfaces (upper part) and slowness
contours (lower part) are shown at low frequency Ω = 0.01 for preload levels near macro bifurcation in compression
(left) and micro bifurcation in tension (right), compared with the case of null preload (centre).

As for Fig. 12, infinite-wavelength bifurcations occur at the vanishing slope of one of the acoustic
branches at the origin of the space {Ω,K} (tangents reported as red lines).
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The critical pair nE and gE , corresponding to loss of ellipticity in the equivalent elastic continuum,
is reported in the polar plot of Fig. 18, analogous to Fig. 13, except that now the preload is equibiaxial,
p1 = p2.

(a) p1 = p2 = p−E = −4.74102
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(b) p1 = p2 = p+E = 34.066669
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Figure 18: As for Fig. 13, except that the preload is equibiaxial, p1 = p2. Polar plots are reported of the square root
of the lowest eigenvalue of the acoustic tensor of the solid equivalent to the elastic grid, for an equibiaxial prestress
state at failure of ellipticity in compression (p1 = p2 = p−E = −4.74102) and in tension (p1 = p2 = p+E = 34.06669).

Owing to the cubic symmetry inherited from the elastic grid, loss of ellipticity in the equivalent
elastic material occurs along a pair of orthogonal directions n1

E and n2
E , to which the associated wave

amplitudes g1
E and g2

E are orthogonal, indicating that the modes of localization are pure shear waves,
i.e. shear bands.

The polar plot shown in Fig. 18-a, relates to the square lattice under the critical negative prestress
p−E . Waves propagating along the horizontal and vertical directions possess equal velocities, hence
ellipticity is lost when both of these velocities vanish at once, leading to two simultaneous shear bands
with normals n1

E and n2
E .

When the critical positive prestress (tension) is approached, in the polar plot of Fig. 18-b the
eigenvalues of the acoustic tensor do not vanish, so that ellipticity of the equivalent continuum is
preserved and a micro instability becomes critical. This singular behaviour occurs only in the special
case of equibiaxial stress. In this case, the slope of the acoustic branches at the origin of the space
{Ω,K} does not vanish, as visible in Fig. 17 on the right. Therefore, in the case of tensile biaxial
preload, a micro (instead of a macro) bifurcation of the lattice occurs, leaving the equivalent solid
unaffected.

The dynamic response evidenced by the dispersion curves (Fig. 17) and that of the equivalent
continuum are confirmed in Fig. 19, where the behaviour of the grid (upper parts) is compared
with the behaviour of the equivalent continuum (lower parts). Both the grid and the equivalent
continuum are loaded through a pulsating force inclined at π/4 and applied at the central node (C3

in Fig. 2) in the lattice. The low-frequency regime is investigated in the figure so that the concentrated
force pulsates at the dimensionless angular frequency Ω = 0.01. The three preload/prestress values
0.999 p−E , 0, and p+E are analyzed, see Table 2.

When the prestress is compressive and near failure of ellipticity, the inclined force simultaneously
excites two shear bands, orthogonal to each other, Fig. 19 on the left. For a value of preload/prestress
near failure of ellipticity in tension, Fig. 19 on the right, shear bands do not emerge. In this case, the
homogenized response still captures the behaviour of the grid, but in the latter, a micro bifurcation
occurs, although not activated by the point force applied at the central node.

This situation is analyzed now in more detail focusing on the micro instability. The effects related
to the latter can be revealed by applying the concentrated force on a face of a slider (for instance
the left face of slider S1 in Fig. 2), instead of the central node of the grid (as in Fig. 19), or a
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Figure 19: As for Fig. 14, except that the preload is equibiaxial, p1 = p2 and that the concentrated force is diagonally
inclined (at π/4). The displacement field is shown during vibrations of a grid of Rayleigh rods at a frequency Ω = 0.01,
with the critical preload values, p−E and p+E listed in Table 2. Differently from the uniaxial preload, shear bands do not
emerge at the failure of ellipticity in tension (on the right), where a micro bifurcation occurs simultaneously with the
macro bifurcation and prevails on the latter. On the left, in compression the inclined force excites both a horizontal
and a vertical shear band.

concentrated bending moment at the central node of the grid. These two cases are reported in
Fig. 20, only pertaining to a grid of rods numerically solved via F.E. method. Specifically, the case
of a point force applied on the left face of a slider is reported in Fig. 20 upper part, whereas the case
of a moment applied at the central node is reported in Fig. 20 lower part.

Fig. 20 reveals that for compressive and null preload the situation remains very similar to that
shown in Fig. 19 (on the left and the central part). However, there is a striking difference when the
microinstability occurs (compare Fig. 19 on the right with Fig. 20 on the right). In the latter case,
the loss of compliance induced by micro instability strongly limits the effects of the concentrated force
and moment, which tend to vanish, namely, the bending and the node rotations extend to a limited
number of rods in the close neighbourhood of the application point.
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Figure 20: As for Fig. 19, except that the inclined force is applied on a slider face, instead of at the central node
of the grid (upper part), and a concentrated moment is applied at the central node of the grid (lower part). While
for compressive and null preloads the plots are very similar to those reported in Fig. 19 (left and centre), the results
pertaining to the failure of ellipticity in tension (right) show that a micro instability prevails so that the response to
the applied force or moment remains strongly localized in a vanishing small neighbourhood of the application point.

5 Concluding remarks
A rigorous Floquet-Bloch analysis and homogenization of periodic grids of preloaded elastic rods have
shown that the inclusion of slider constraints introduces strong mechanical effects. These are related
to the dynamics of the grid and the occurrence of localization of deformation in the form of shear
bands. These localizations occur both in compression and in tension, so that materials working like
thin sheets can be obtained and subjected to tensile loads. Metamaterials with embedded sliders can
be designed in a way that shear bands emerge at the elliptic/parabolic boundary, evidencing a single
shear band. In this way, stress channelling and vibration localization can be realized. These effects
can be used to propagate signals in preferred directions within a plane, with minimal dispersion. The
localization was shown to be activated or deactivated simply increasing or decreasing the axial preload
of the rods. Therefore, the presented results open new possibilities in the mechanics of metamaterials.

A Full expression for the effective acoustic tensor
The complete analytic expression for the effective acoustic tensor of the lattice analyzed in Section 2
is here reported in the dimensionless form A = EA1

l1
Ā.

Ā11 =
k21
ξ

+
a11k

2
2

λ2
2D

,

Ā22 = χk22 +
a22k

2
1

λ2
1ξD

,

Ā12 = Ā21 = k1k2
a12
D

,
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