

Growth mechanics and mechanics of nonholonomic systems

Prof. Alfio Grillo

(joint work with Andrea Pastore and Salvatore Di Stefano)

Dipartimento di Scienze Matematiche (DISMA) "G. L. Lagrange", Corso Duca degli Abruzzi, 24, Torino

Date	13 May 2024
 Time	10.30–11.30
 Room	2R, DICAM, Mesiano

Abstract

In this contribution, I will present the preliminary steps of an ongoing work that aims at framing the mechanics of the volumetric growth in biological media as a field theory that admits a variational formulation in spite of its being nonholonomic. The nonholonomic nature of the growth problem descends from regarding the mass balance law of a growing medium as a constraint on the time rate of a structural descriptor of the medium itself, which is compelled to equal the rate of mass variation within the body [1,2]. The structural parameter is the tensor of inelastic distortions generated by growth, and is the factor of the Bilby-Kröner-Lee decomposition of the deformation gradient tensor of the medium. The rate of mass variation, instead, is assigned phenomenologically (see, e.g., [3]), and its functional form makes it impossible, in general, to express the constraint as the time derivative of a scalar function of the generalized Lagrangian parameters of the system.

After reviewing some results on growth [1,2,4-6], I will report on a variational procedure based on the method known as Hamilton-Suslov Principle, and elaborated in [7] to handle nonholonomic constraints variationally, and I will show its connections with a more classical approach to the analytical mechanics of nonholonomic systems [8]. Then, I will discuss whether the methodology developed in [7], adapted to account for non-potential forces [9], can be applied to growth mechanics. Finally, I will summarize the main implications of this formulation, and compare it with that of other authors.

Bibliography

[1] Grillo, A., Di Stefano, S.: «A formulation of volumetric growth as a mechanical problem subjected to non-holonomic and rheonomic constraint». Mathematics and Mechanics of Solids (2023) 28(10), 2215-2241.

[2] Grillo, A., Di Stefano, S.: «Addendum to "A formulation of volumetric growth as a mechanical problem subjected to nonholonomic and rheonomic constraint"». Mathematics and Mechanics of Solids (2024) 29(1), 62-70.

[3] Mascheroni, P., Stigliano, C., Carfagna, M., et al.: «Predicting the growth of glioblastoma multiforme spheroids using a multiphase porous media model». Biomech. Model. Mechanobiol. (2016) 15(5), 1215-1228.

[4] Grillo, A., Di Stefano, S.: «An a posteriori approach to the mechanics of volumetric growth». Mathematics and Mechanics of Complex Systems (2023) 11(1), 57-86.

[5] Grillo, A., Di Stefano, S.: «Comparison between different viewpoints on bulk growth mechanics». Mathematics and Mechanics of Complex Systems (2023) 11(2), 287-311.

[6] Pastore, A., Giammarini, A., Grillo, A.: «Reconciling Kozlov's vakonomic method with the traditional non-holonomic method: solution of two benchmark problems». Acta Mechanica (2024) 235, 2341-2379.

[7] Llibre, J., Ramírez, R., Sadovaskaia, N.: «A new approach to vakonomic mechanics». Nonlinear Dynamics (2014) 78, 2219-2247.

[8] Neimark, J., Fufaev, N.A.: Dynamics of Nonholonomic Systems. Rhode Island: Am. Math. Soc., 1972.

[9] Lanczos, C.: The Variational Principles of Mechanics. Dover Publications, New York, 1970.

The seminar is organized by the Solid and Structural Mechanics Group [D. Bigoni, F. Dal Corso, L. Deseri, D. Misseroni, M.F. Pantano, A. Piccolroaz, N.Pugno, R. Springhetti]