
Vol.: (0123456789)
1 3

Meccanica 
https://doi.org/10.1007/s11012-024-01786-2

RESEARCH

Effects of a nonlocal microstructure on peeling of thin films

Riccardo Cavuoto · Luca Deseri · 
Massimiliano Fraldi

Received: 31 January 2024 / Accepted: 14 March 2024 
© The Author(s) 2024

Abstract In this work, starting from an approach 
previously proposed by the Authors, we put forward 
an extension to the large deformation regime of 
the dimensionally-reduced formulation for peridy-
namic thin plates, including both hyperelasticity and 
fracture. In particular, the model, validated against 
numerical simulations, addresses the problem of the 
peeling in nonlocal thin films, which when attached 
to a soft substrate highlights  how nonlocality of the 
peeled-off layer might greatly influence the whole 
structural response and induce some unforeseen 

mechanical behaviours that could be useful for engi-
neering applications. Through a key benchmark 
example, we in fact demonstrate that de-localization 
of damage and less destructive failure modes take 
place, these effects suggesting the possibility of ad 
hoc  conceiving specific networks of nonlocal inter-
actions between material particles, corresponding 
to lattice-equivalent structure of the nonlocal model 
treated, of interest in designing new material systems 
and interfaces with enhanced toughness and adhesive 
properties.
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1 Introduction

In laminated composites, peeling refers to the separa-
tion or delamination of layers within the composite 
material. This phenomenon can significantly compro-
mise the structural integrity and performance of the 
composite structure, especially that of laminated com-
posites—structures made by bonding together layers 
of different materials. Peeling can weaken the bonds 
between these layers, leading to a loss of structural 
integrity, reducing the composite material’s mechani-
cal properties, such as strength and stiffness, and 
accelerating the degradation of the material over time. 
Addressing this issue is especially critical in appli-
cations where the composite is subjected to extreme 
mechanical loads or stresses, and applications where 
the composite is designed for specific functional pur-
poses, such as in aerospace or automotive components.

Peeling has therefore been extensively studied 
in the scientific literature [1–29]. A large amount 
of experimental and theoretical works explore the 
effects of several parameters, such as the peel angle, 
the thickness of the peeled-off material and the influ-
ence of the type of adhesion between the materials. 
Yet only a few studies focus on the effects of existing 
microstructures on the overall response [30–33].

Various numerical methods for fracture predictions 
have recently been developed to address the predic-
tion of peeling forces and delamination paths, such 
as the cohesive-zone model (CZM) and the phase-
field approach to fracture mechanics (PF) [34–42]. 
These models, though, suffers from some limitations, 
namely the a priori knowledge of crack path for the 
CZM and the physically unclear boundary condition 
for the phase-field approach.

Several of such limitations are circumvented by 
Peridynamics, a relatively recent theory introduced 
by Silling in [43, 44]. Peridynamics is a strongly non-
local theory that has several advantages over other 
approaches when dealing with damage and fracture 
transition, but also with crack propagation. These 
advantages are both related to the natural correlation 
between fracture and nonlocal fields [45], as well as 
to the intrinsically direct way to implement damage at 
the constitutive level in the peridynamic theory [46].

In the peridynamic literature, models for thin bod-
ies can be divided into two main categories: (i) fully 
three-dimensional models [47–49], and (ii) dimen-
sionally-reduced models [44, 50–57]—namely 2D. 
While the former approach boasts numerous works 
[58, 59], among which many deal with delamina-
tion, fewer dimensionally-reduced models have been 
put forward and only one of them treats delamina-
tion explicitly [60]. The advantages of a dimension-
ally reduced formulation in bond-based peridynamic 
theory are numerous: (i) the dimensional reduction 
drastically lowers the computational effort which is a 
serious issue in peridynamics computational simula-
tions, where the number of elements grows exponen-
tially with the number of nodes in the model; (ii) the 
reduced formulation foster a physical interpretation 
of the various terms emerging from the reduction 
procedure giving a better insight on the phenomena 
related to nonlocal material of the peridynamic kind.

In [60], the Authors have witnessed unusual 
properties of nonlocal peridynamic thin structure 
emerging from the results of the dimensionally 
reduced formulation; properties that, thanks to a 
well-established equivalence between the peridy-
namic bond-based theory and a particular network 
of trusses, can be ascribed to the nonlocal character 
of this microstructure.

In the present work, we operate towards expand-
ing the reduced formulation discussed [60] to the 
large displacement regime and test the model in a 
very specific peeling test against numerical simula-
tions. It is found that the nonlocal character of peri-
dynamics leads to interesting properties, such as 
de-localization of damage and changes in the force 
required to induce peeling in a thin film.

The paper is organised as follows: in Sect.  2 a 
brief introduction of bond-based peridynamics is pre-
sented, while the nonlinear regime is implemented in 
the constitutive equations (Sect.  2.1). In Sect.  3 the 
reduced formulation is presented and extended to the 
nonlinear deformations case in a computational fash-
ion, where the elastic problem is set up and a corre-
sponding solution algorithm is presented. In Sect. 4 
the model is applied, and compared with numerical 
solutions, to study the peeling of a thin nonlocal film 
from a soft substrate. A sensitivity analysis of hori-
zon size is also performed. Lastly, in Sect. 5, a dis-
cussion about the results obtained is carried out and 
implications of the findings are presented.
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2  Fundamentals on nonlinear bond‑based 
peridynamics

Bond-based peridynamics [43] is a strongly nonlocal 
continuum theory that models a body B as a collec-
tion of particles, see Fig.1. 

Static equilibrium of the body under exam is 
imposed according to the following integral equation:

where u is the displacement field mapping, through 
a function �(x, t) with no requirements of regularity, 
the body under exam onto its deformed configuration, 
b is the vector of distributed loads and f  , called the 
pairwise force function, is the vector representing the 
interaction among each pair of particles. These forces 
not only represent nearest and next-to-nearest neigh-
bour interactions but more generally forces between 
each point x and all the others x′ close enough to it 
(see Fig.  1, points in blue). In other words, such 
points x′ belong to ℍ(x) = {x� s.t. |x� − x| ≤ �} , a 
neighbourhood of x , where � is called horizon [43, 
60, 61]. Typically, in the elastic regime a linear rela-
tionship between f  and a generalised measure of 
strain, s, is assumed,

where c is a constant—called the bond constant—
while e is the unit vector expressing the direction of 
the bond. Finally, � is a history-dependent scalar-val-
ued function, called failure parameter, which enforces 

(1)∫
ℍ

f (x, x�, u(x), u(x�))dx� + b(x) = 0,

(2)f
(
x, x�, u(x), u

(
x�
))

= c� s
(
x, x�

)
e
(
x, x�

)
,

bond breakage under tension only [60, 62]. Such a 
parameter is equal to 1 until the bond is intact, while 
it takes value zero whenever a critical elongation scr 
(or critical energy �cr ) is reached [63–67]. Hereon, 
a more compact notation is used, namely � = x� − x , 
� = u� − u (where u� = u(x�) ) and � = |� + �|∕|�| for 
the stretch, which allows to write e = (� + �)∕|� + �|.

If the force function admits a potential, then 
a pairwise potential function can be defined as 
follows:

 To compare the modelling capacity of the peridy-
namic approach with that of standard local continua, 
the bond constant c is typically calibrated by enforc-
ing an energetic comparison [68]. A very consistent 
strategy is the one adopted in [69], where the equiva-
lence between the nonlocal peridynamic energy den-
sity and the standard local elastic one is assumed 
under the hypothesis of small horizons and small dis-
placements. This type of calibration leads to writing 
the following relationship between c and the Young’s 
modulus, E, of an equivalent homogeneous linear 
elastic local solid:

written for the purely 2D case.

(3)�(�, �) = ∫ f (�, �) ⋅ d� = c |�|∫ � s(�)d� .

(4)c =
9E

��3
,

Fig. 1  Mapping of the 
undeformed peridynamic 
body into its deformed 
state, corresponding to 
some step t of a loading 
process. Material particle 
x interacts with all the 
ones belonging to a certain 
region centred in x (in red), 
called its family, ℍ(x) . Inter-
actions are made explicit 
through the rise of recipro-
cal forces exerted on pairs 
(x, x�) due to deformation
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2.1  Nonlinear regime formulation

We hereby briefly summarise the concepts and meas-
ures of a large deformation theory applied to bond-
based Peridynamics, as some of the following rela-
tions are already present in the relevant literature [55, 
70–77]. Nevertheless, it is detected that some quan-
tities related to the peridynamic solid have not been 
explicitly quantified in this context.

In trying to compensate this drawback, it is useful 
to recall that the microstructural interpretation of a 
bond-based peridynamic solid is that of a network of 
trusses that connect the material points in pairs and 
exchange collinear forces [43, 60, 64, 69, 78–80]. To 
account for the large deformation of these trusses a 
nonlinear measure of deformation must be consid-
ered. This is because the conventional strain measure

fails at remaining consistent in that regime. Hence, a 
more adequate strain measure for the nonlinear geo-
metric regime turns out to be the following:

The complete derivation of Eq. (5) is shown in the 
Appendix. According to (5) the resulting pairwise 
force function and pairwise potential function are:

s = � − 1,

(5)s =
log �

�
.

3  Thin plates peridynamic model accounting 
for delamination

In a previous work [60] a dimensionally reduced 
formulation for the through-thickness delamination 
of thin plates has been introduced. The formulation 
relies on an additive decomposition of the displace-
ment field, u(x) , of thin solids into an absolutely con‑
tinuous part, u�(x) , and a jump part, uJ(x) , see Fig. 2. 
There, the formulation has been used to explore the 
effects of a nonlocal microstructure at the onset and 
early-stage development of crack propagation. The 
obtained results showed several unconventional prop-
erties, such as distal nucleation of the delamination 
surface for the most usual peeling tests and asymmet-
rical propagation for the effects induced by couples. 
The possibility of predicting damage away from the 
loaded zones is a very promising outcome for several 
engineering applications related to the development 
of prototypes.

Given the thin element’s geometrical features, 
the absolute continuous part of the displacement 
was approximated by a through-thickness series 
expansion: u� = A(x1, x2) + B(x1, x2)x3 +⋯ . 
In contrast, for the jump part, a relatively gen-
eral ansatz is found in [60] and reads as follows: 

(6)
f = c�

log �

�

� + �

|� + �| ,

� =
1

2
c�|�|(log �)2 + (1 − �)�cr.

Fig. 2  Geometric sche-
matic for the thin solids 
under exam (on the left) and 
for the class of admissible 
displacement fields (on the 
upper right). A delamina-
tion surface h(x) is allowed 
to propagate through the 
thickness of the solid, sepa-
rating the two portions of 
the system by a differential 
j(x)
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uJ(x) = j(x1, x2) H(x3 − h(x1, x2)) , where H is the 
Heaviside function, xi are the main axes of a Carte-
sian reference system centred on the mid-plane of 
the plate with x3 being the through-thickness direc-
tion. Lastly, h(x1, x2) and j(x1, x2) are functions rep-
resenting the delamination surface and jump quan-
tity, respectively. These quantities are all explicitly 
displayed in Fig. 2. As is clearly stated in [60], such 
a displacement ansatz limits the delamination sur-
face to being unique therefore only one surface can 
nucleate and propagate within the thickness, which 
is quite reasonable for thin objects. This assumption 
which may have had a certain influence in the study 
of homogeneous thin plates treated in [60], looses 
much of its limitations when a well-defined preexist-
ing horizontal interface exists such as in the present 
work (see e.g. Fig. 3).

3.1  Delamination of a thin film on a substrate

The scope of the present paper is to present an exten-
sion of the above-mentioned model to the large dis-
placement regime. This extension permits one to 
follow the evolution of damage until the collapse of 
specimens, even when large rotations and translations 
do occur before the loss of integrity of the system. 
This allows for investigating the differences in terms 
of the mechanical response of nonlocal architectured 
thin solids when compared with standard ones behav-
ing locally in such large displacement regimes.

Similarly to what was performed in [60], from 
the energetic point of view, one can write the total 
Lagrangian as the difference between work expended 
by external loads, W , and the strain energy of the 
nonlocal continuum, E:

where B stands for the current configuration of the 
body, B0 is the reference one, � is that of Eq. (6), 
p = b ⋅ u and their overbar version is the result of the 
pullback of the integrals onto the reference configura-
tion [81]. Therefore,

(7)

L = W − E = ∫
B

⎛
⎜⎜⎝
p − ∫

B�

� dV �
⎞
⎟⎟⎠

dV = ∫
B0

⎛⎜⎜⎜⎝
p − ∫

B�
0

� dV �
0

⎞⎟⎟⎟⎠
dV0 ,

where S and S′ are regions defined by the reduction 
plane, i.e. the plane with respect to which the dimen-
sional reduction is performed, while x3 is the normal 
direction to the plane of dimensional reduction. See 
[60] for a thorough derivation.

Equilibrium configurations are then searched for 
by solving

with �red and pred being the result of the through-
thickness integrations in (8). Since the displacement 
field, u , is itself a function of various scalar functions, 
specified by the ansatz mentioned above, Eq. (9) is 
actually a system of equations, which can be symboli-
cally expressed by replacing the derivation variable u 
with A,B,⋯ , j, h.

3.1.1  Explicit nonlinear formulation and step‑by‑step 
solution scheme

 A direct way to deduce a representation formula for 
the symbolic expression of the reduced form of the 
peridynamic pairwise potential function would be 
quite challenging to conceive and it goes beyond the 
scope of this paper. Therefore, a computational pro-
cedure is devised to solve (9) step-by-step along the 
loading process. At the generic loading step, the non-
linear pairwise potential function is approximated by 
the following quadratic form

where the unknowns Δ� , the increment in the dis-
placements, are the only varying quantities since all 
the others are being held fixed, and ℂ the micro-mod-
ulus function representing the tangential stiffness is 
defined as

(8)

L = ∫
S

⎡
⎢⎢⎣∫

p dx3 − ∫
S�

�
1

2 ∫ ∫ � dx�
3
dx3

�
dS�

⎤
⎥⎥⎦
dS,

(9)�L[u] = ∫
S

⎡
⎢⎢⎣
�pred

�u
− ∫

S�

2
��red

�u
dS�

⎤
⎥⎥⎦
⋅ �u dS = 0,

(10)

� ≈ �[�(�, �) + f (�, �) ⋅ Δ� + Δ� ⋅ ℂ(�, �)Δ�∕2]

+ (1 − �)�cr
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where Iij = �ij , �ij is the Kronecker delta, and � is the 
stretch of the bond. Functions �(�, �) and f (�, �) of 
(6), are being evaluated at the specific increment.

System (9) can then be rewritten in the new 
unknowns, which are the incremental displacements, 
and solved using a Ritz–Galerkin approach.

At each increment of the loading process, the 
reduced energy can be evaluated by assuming a per-
fectly elastic behaviour, a hypothesis that becomes 
more realistic when the increments are small.

At the end of each step, a check on bond elonga-
tion is performed and those that are found to be above 
the critical threshold are removed from the model by 
associating a value of � = 0 . These steps are summa-
rised in Algorithm 1.

(11)ℂ(�, �) =
c

|�|
(
log 𝜆

𝜆2
I +

1 − 2 log 𝜆

𝜆2
e⊗ e

)
,

clamped to the ground (null relative displacements 
and rotations) is isotropic and homogeneous, exhib-
iting a local response. The upper layer, Material 1 in 
Fig. 3, on the contrary, is inherently nonlocal (peri-
dynamic), and thus equivalently described by a lat-
tice with an intricate network of trusses [60].

The effects of a varying horizon, � , on the peeled 
film—the upper layer—are explored.

The various cases are compared in terms of crack 
nucleation and propagation path under the condition 
of identical bulk stiffness and strength properties. 
The stiffness of the bulk portion of the body is cali-
brated by using (4), while the strength is determined 
by utilising a relationship between critical bond 
elongation scr and critical surface energy for mode-I 
fracture propagation in standard local continua. To 
do so, the energy required to create a new surface in 
the bulk region of a bond-based peridynamic solid 
is computed. To this end, by following the ideas in 

Algorithm 1  Scheme for the solution of (9) at a step n ≥ 1

4  Peeling of a thin peridynamic film 
on deformable substrate

We here apply the nonlinear and computationally 
reduced model for the delamination of peridynamic 
thin plates to study the peeling-off behaviour of a 
flexible film attached to a soft substrate (see Fig. 3).

In detail, two layers of different homogeneous 
materials attached one on top of the other, with a 
flat and perfect interface parallel to the mid-plane 
of each material, are subjected to a displacement-
induced peeling test. The two layers share the same 
stiffness and strength response. The substrate, 

[44, 46], and by equating the peridynamic energy 
required to form a new surface under isotropic 
expansion to the critical energy required to open a 
new surface in a local solid, G , one gets:

where � is that of equation (6) assuming � = 1 (see 
e.g. [46] chapter  6 Eqs. (6.11–6.19)), which then 
solved for scr gives:

(12)
G = 2∫

�

0 ∫
�

z ∫
cos−1 z∕|�|

0

� |�| d� d|�| dz

=
1

4
c�4 log(1 + scr)

2,
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where the last equality is in virtue of Eq. (4).
The reduced formulation is also compared with 

full-scale bond-based peridynamic analysis per-
formed through  ANSYS®. Following established 
considerations available in [43, 47, 60], the correct 
way to discretise a bond-based peridynamic problem 
is using a grid of nodes. In particular, for a pair of 
nodes (i,  j) each of them is associated with its own 
small neighbouring volume of peridynamic material, 
say Vi for the node i. For pairs of nodes (i, j) included 
in the horizon (i.e. satisfying a relative distance 
threshold, represented by the horizon) they are con-
nected by truss elements whose stiffness, kij , amounts 
to 2kij = cViVj∕|�|.

In the sequel, a benchmark result is presented for 
the type of test depicted in Fig. 3, showing the propa-
gation of a crack in a local continuum characterised 

(13)scr = e
√
4G∕(c �4) − 1 = e

√
4�G∕(9E �) − 1, by a specific damage criterion. The benchmark is 

compared with the result of an analysis of the same 
test carried out on an equivalent lattice of trusses, 
which in [60] is shown to be a local limit of the peri-
dynamic bond-based model.

4.1  Lattice equivalent local continuum: a benchmark 
model

 In the following, a benchmark analysis is portrayed, 
see Fig. 4. The homogeneous material under study is 
characterised by a local linear elastic and isotropic 
constitutive response (E = 1800MPa, � = 0.25) in 
a geometrically nonlinear regime with the Hencky 
strain measure. A scalar damage theory, relying on 
Rankine strain, with exponential strain softening 
[82], a tensile strength of �ts = 100 MPa and a frac-
ture energy per area of G = 10 N/m is implemented 
for the post-elastic behaviour, to reproduce crack 

Fig. 3  Representative sketch of the geometrical conditions 
under exam for peeling of an elastic thin film (in red), denoted 
as Material 1, on a deformable substrate (in blue), denoted as 
Material 2. In the sequel, Material 2 will be modelled with a 
standard local continuum theory to reproduce its local behav-

iour. Material 1, on the contrary, is considered to be either 
local or nonlocal, and the effects of a more pronounced non-
locality on the mechanical behaviour of the composite are 
explored. Throughout the work perfect adherence is assumed 
for the interface between Materials 1 and 2

Fig. 4  Frame of the loaded edge of a homogeneous local thin 
film loaded as shown in Fig. 4 and predictions of damage prop-
agation according to a lattice equivalent model (a) and stand-

ard fracture mechanics model (b). Part (c) shows a direct com-
parison obtained by the overlapping of images (a) and (b)
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propagation in the solid. The boundary conditions of 
the test are those of Fig. 4, where the right edge of the 
specimen is partially pulled upwards, while the lower 
edge is held fixed.

The result of the local analysis (part b of Fig.  4) 
is compared with that of a coarse equivalent lattice, 
which well approximates a peridynamic bond-based 
continuum in the local limit [60] (see part (a) of the 
figure). A comparison of the two results is shown in 
(c) by superposition of the final stages of the analyses.

4.2  Pronounced nonlocality

 This paragraph presents the results of the displace-
ment-induced peeling test carried out in the case of 
Material 1 having a pronounced nonlocal microstruc-
ture, i.e. bonds connect material particles that are at 
most at a distance of � = 0.3H from each other, see 
Fig. 5. The lattice parameters, such as the bond con-
stant, c, and the bond critical stretch, scr , have been 
calibrated making use of Eqs. (4) and (13). Those 
allow for obtaining stiffness and strength of the bulk 

Fig. 5  On the left: in red the layer of material which is being 
pulled upwards in a displacement-induced peeling test, while 
in blue a thin compliant substrate. The upper layer has a pro-
nounced nonlocal microstructure ( � = 0.3H ), while the lower 
layer is assumed to behave almost locally. The picture shows 

the intact bonds after an imposed vertical displacement of 
u = 40% H. On the right: map of the displacements showing 
contour lines normalised with respect to the peak imposed dis-
placement of u = 40% H. In red and blue the thin layer and sub-
strate respectively have the same overall stiffness and strength

Fig. 6  The final configuration (on the left) and contour plot 
of the displacements (on the right) for the analysis conducted 
using  ANSYS® on a thin film (in red, with � = 0.3H ) laying on 
a soft substrate (in blue) subjected to a peeling test and charac-
terised by a microstructure which corresponds to the discrete 
approximation of bond-based peridynamics. The model is 

full-dimensional, meaning no reduction through the thickness 
has been performed. Final displacement of the test amounts 
to u = 45% H. Still, comparison with results from the reduced 
formulation shows a very close (qualitative and quantitative) 
resemblance
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portion of the body which are comparable to those of 
the substrate. Calibration is performed as explained in 
the first part of Sect. 4.

The results of the analysis on the nonlocal struc-
ture show a horizontal propagation of the crack tip 
which easily spans a length greater than the element 
thickness, only to propagate in the upper material at 
a distal section from the loaded end. These obser-
vations are reported in Fig. 5, where the final stage 
of the displacement-induced peeling test has been 
shown for the case of the dimensionally reduced 
peridynamic formulation. This result is confirmed 
by full dimensional analysis, carried out by using 
 ANSYS® software of the nonlocal lattice equivalent 
to the discrete approximation of bond-based peridy-
namics, as depicted in Fig. 6. It is worth highlight-
ing that the two methodologies gave no differences 
in terms of fracture onset, both cases reproducing 
damage onset at the same loci.

Force versus displacement plots, Fig.  7 shows a 
qualitative correspondence between the dimension-
ally reduced peridynamic formulation and the full 
dimensional discrete approximation. Peaks occur at 
similar values of the force but at slightly different val-
ues of the imposed displacement. It is believed that 
this difference is due to the approximation introduced 

by the ansatz assumed for the displacement field 
while obtaining the dimensionally reduced formu-
lation. Indeed, for the case portrayed in the various 
figures of the present section, only first-order terms 
in the through-thickness coordinate have been con-
sidered for the absolutely continuous part of the dis-
placement. Despite this clear limitation, improve-
ments in the stiffness of the structure could be 
achieved by assuming such a displacement field with 
higher-order terms in the through-thickness variable. 
Nonetheless, a generally good qualitative and quanti-
tative agreement is found between the two modelling 
approaches.

4.3  Reducing the nonlocal range of interaction

 We here explore the effects of reducing the nonlocal 
feature of the upper layer (Material 1 of Fig. 3) on its 
failure mechanism.

In particular, nonlocality has the role of promot-
ing horizontal crack propagation delaying the growth 
of damage inside the upper layer until a distance well 
beyond the height of the whole element. In this sense, 
damage to the thin upper layer is located at a distal 
section from the loaded end. This effect is captured 
in Fig. 8 through a sensitivity analysis of the effect of 

Fig. 7  Results of the peeling simulations carried out on a thin 
layer of a nonlocal microstructure using the reduced formula-
tion presented above (continue line in blue) and a full dimen-
sional model (dot-dashed line in black), expressed in terms 
of force (normalised with respect to peak force of the fully-

dimensional formulation) versus displacements (normalised to 
specimen height H). In red is the ratio between intact and total 
bonds, representing effective damage nucleation and propaga-
tion
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the horizon length on crack nucleation and propaga-
tion. In particular, Fig. 8, summarises these findings 
by showing (on the left) three specimens with differ-
ent nonlocal lattice networks for the upper layer—
which are the discrete equivalent of bond-based peri-
dynamics—and the path taken by the crack at the end 
of the peeling test. It is quite clear how even in the 
conditions of constant stiffness and strength of the 
composite, a nonlocal microstructure can foster dif-
ferent failure behaviours and lead to the formation of 
a delamination surface running at the interface with 
the substrate. Furthermore, an increasing nonlocal 
trait corresponds to a change in the orientation of the 
crack path when it deviates from the interface into 
the upper material. Indeed, the path tends to become 
more and more vertical with the growing horizon 
length. The right side of Fig. 8 shows the force versus 
displacement plots of the above-mentioned peeling 
test carried out on several nonlocal materials. All of 

the numerical simulations are carried out by keeping 
an equal overall stiffness and strength but different 
horizon lengths, i.e. nonlocal interaction.

From the force versus displacement plot (Fig.  8 
on the right), it emerges that lower horizons lead to 
stronger structures storing more energy in the form of 
straining recoverable work, although that leads to fail-
ure. This is characterised by smaller internal surfaces 
(Fig.  8 on the right) that, as seen from the previous 
paragraphs, evolve immediately in the upper layer and 
stay limited to a region very close to the loaded end. 
Figure  8 at its lower right corner displays the ratio 
between the external work done by lifting the free 
edge (i.e. the input energy), the surface free energy 
(reported with the blue empty squares), and the ratio 
between the length of the free surface created in the 
solid and the element thickness H. The latter is a 
quantity proportional to the dissipated energy. There-
fore, to greater distance between the blue dashed 

Fig. 8  On the left: side view of post‑mortem specimen sub-
jected to peeling test. The specimen’s upper layers are obtained 
with an increasing nonlocal character ( � ), whereas the lower 
layers behave locally. On the right upper part: force versus 
displacement plots (normalised with respect to the peak force 
registered among all the different cases) resulting from the 

peeling test of thin films with varying nonlocal horizons � . On 
the lower right: for various ratios of horizons to thin element 
height ( �∕H), the ratio between the work done to deform the 
structure at the end of the test and surface free energy ( �∕GIc ) 
and the length of the crack to plate height ratio ( dcrack∕H ), are 
reported
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curve and the red dashed one, corresponds to a greater 
quantity of strain energy stored in the structure.

Larger horizons, on the contrary, make the struc-
ture more and more compliant at the borders. Such 
an inhomogeneity ends up attracting the crack path 
that ultimately leads to smaller forces required to pro-
duce crack propagation. The more the microstructure 
is nonlocal the more the propagation travels hori-
zontally to greater distances (see Fig. 8 on the left), 
allowing the damage to the upper layer to grow in a 
distal region of the solid.

5  Conclusions

In the present work, a dimensionally reduced and 
fully computational formulation of peridynamic 
bond-based thin structures in the nonlinear regime is 
obtained. Theoretical aspects related to the nonlinear 
generalisation of the dimensionally reduced perydi-
namic model are object of ongoing efforts and possi-
ble future works. The model stems from a previously 
published work of the Authors that treated the very 
onset of early-stage fracture nucleation and growth. 
Crack propagation until complete specimen failure 
is instead explored in this present work by employ-
ing a Hencky-type pairwise potential function. This is 
to account for geometric nonlinearities. The proposed 
model is used here to address a specific case study. 
That consists of a thin layer of nonlocal material per-
fectly bonded on top of a soft substrate and subject 
to a displacement-induced peeling test. The results 
from the model are compared with a fully three-
dimensional analysis (conducted on the same case 
study) by implementing a discrete approximation of 
bond-based peridynamics in  ANSYS®. It is found that 
the proposed reduced formulation gives a good quali-
tative and quantitative agreement with the numeri-
cal results obtained with  ANSYS®, even though a 
perfect match between those two solutions is not yet 
achieved, primarily because a first-order approxima-
tion of the through-thickness displacements is uti-
lised. From a sensitivity analysis performed on both 
models (dimensionally reduced and fully discrete), a 
strong dependence of the crack growth on the horizon 
(describing the degree of nonlocality) is assessed.

It is found that a pronounced nonlocality of the 
upper peeled layer can lead to a decrease in the force 
required for peeling failure. At the same time, a more 

local feature is associated with a destructive fracture 
process, in which the crack propagates in the vicinity 
of the loaded section and the upper material. Given 
the equivalence between a nonlocal continuum and its 
associated lattice network (valid for the bond-based 
peridynamic model), it is seemingly appropriate to 
speak about nonlocal microstructures for the cases 
at hand. Such submacroscopic structures thus show a 
crack path propagating at the boundary between the 
two materials and then deviating in the upper layer. 
This occurs only at a later stage, and it causes damage 
to portions of the body which are far away from the 
loaded end.

All of the above-mentioned aspects can have vari-
ous implications in the engineering field. In particu-
lar, the fact that certain microstructures reduce the 
force required for peeling implies a more efficient and 
possibly controlled peeling process. This may have 
implications for practical applications where mini-
mising the required force is critical, such as in the 
design of adhesive joints or protective coatings. Fur-
thermore, a less destructive failure mode suggests a 
more controlled and predictable response during peel-
ing. This is advantageous in scenarios where keep-
ing the structural integrity of the material is crucial. 
Applications in industries like aerospace, automotive, 
or electronics, where materials often face extreme 
loading conditions, could benefit from this enhanced 
failure mode. Microstructure manipulation as a tool 
for optimising the material behaviour in peeling 
scenarios opens up avenues for designing materials 
with customised and specific mechanical character-
istics, leading to different application requirements. 
Understanding how microstructures influence peel-
ing forces can be particularly valuable in the design 
of adhesive joints. The ability to reduce peeling 
forces while ensuring a less destructive failure mode 
could lead to improved performance and durability of 
bonded structures. Lastly, lowering the force required 
for peeling has potential implications for energy effi-
ciency. Processes involving peeling, such as manu-
facturing or packaging, could benefit from reduced 
energy consumption, contributing to sustainabil-
ity goals. The findings presented in this work could 
inspire further research into different types of micro-
structures and their effects on peeling behaviour. This 
could yield a more comprehensive understanding of 
the relationship between microstructural design and 
mechanical properties affecting peeling.
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Appedix A: A network of nonlinear trusses

The aim of this section is to obtain the expression of 
the pairwise potential function, � , and pairwise force 
function, f  , for a bond-based peridynamic continuum 
accounting for large deformations. In bond-based 
peridynamics, the bond connecting pairs of material 
particles corresponds to a truss, as it exchanges forces 
aligned along the direction connecting the pairs. It is 

assumed here, for each bond a nonlinear constitutive 
relation resulting from a one-dimensional application 
of Hencky’s theory of deformation. In the three-dimen-
sional case, Hencky’s strain energy density [83] can be 
written as

where h = logV = log 𝜆i ei ⊗ ei is the logarithmic 
strain tensor, V being the left stretch tensor [81], 
while Λ and G are the two independent constants—
called Lamé constants—that specify the unique iso-
tropic response of the material to which the energy 
(A1) is associated. In a uniaxial loading framework, a 
truss is subjected to a particular deformation regime, 
namely by assuming �1 to be the stretch in the longi-
tudinal direction and �2,3 the stretches in the transver-
sal directions:

Here, the Pij s are the components of the first 
Piola–Kirchhoff stress tensor. Enforcing conditions 
(A2) onto Eq. (A1) leads to the following strain 
energy density:

where the last equality is obtained by labelling �1 = � 
and introducing the relation between the Lamé con-
stants and Young’s Modulus E. Thus, the total elastic 
energy stored in a truss of cross-sectional area at rest 
A and total length at rest |�| , can be written as

It is possible now to compare the energy of (A3) 
with that emerging from the peridynamic bond-based 
interpretation of a continuum in order to determine its 
formulation. In fact, by considering two very small 
interacting regions V and V ′ (representing volumes in 
3D and areas in 2D) having X and Y as two internal 
points of V and V ′ respectively, the total energy due to 
any type of elastic deformation can be evaluated as:

(A1)� =
Λ

2
(trh)2 + G h ∶ h ,

(A2)
��

��2
= P22 = 0 ,

��

��3
= P33 = 0 .

� =
G(2G + 3Λ)

2(G + Λ)
(log �1)

2 =
E

2
(log �)2 ,

(A3)Ψ = � A |�| = 1

2
EA |�|(log �)2 .

(A4)Ψ = ∫V ∫V �

�(x, y)dxdy = �(X,Y) V V � ,
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where � is the pairwise peridynamic potential func-
tion, and the last equality is in virtue of the mean 
value theorem.

Equating Eqs. (A3) and (A4) leads to the identifica-
tion of the pairwise potential function for bond-based 
peridynamics accounting for Hencky’s strain measures:

here a dependence on X and Y is to be intended for 
the quantities V, V ′ , � and � . It is now possible to 
derive the “Hencky” pairwise force density as

which by direct comparison with the bond-based 
pairwise force function f = c s e∗ leads to:
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