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Abstract

The effect of viscous damping on the nonlinear planar dynamics of a paradigmatic variable-length
structural system is analyzed. The system comprises a lumped mass connected to a variable-length
elastic structure, as constrained by a frictionless sliding sleeve. Although in a gravitational field parallel
to the sliding direction, when the sleeve oscillates transversely and harmonically, the system can achieve
a resonant self-tuning response that enables the lumped mass to overcome its fall through a configu-
rational reaction at the sliding sleeve’s exit. This response is achieved through sustained oscillatory
motion around a finite length, which changes by varying the frequency and amplitude of the sleeve’s
oscillations. Using an experimentally validated viscous dissipation model, the influence of transverse
and longitudinal damping on the self-tuning length and first-order limit cycles is examined analytically
through a perturbation approach. The analysis reveals the potential for unique or multiple periodic
responses, depending on system parameters and damping levels. Stability analysis via Floquet theory
identifies conditions for monostable or bistable dynamic responses, showing that viscous damping can
stabilize or, somewhat unexpectedly, destabilize the system, akin to other dynamic instability prob-
lems. These findings are finally validated by numerical integration of the fully nonlinear version of the
equations of motion. The proposed framework facilitates the design of innovative devices incorporating
bistable elements and metamaterials, enhancing their self-tuning capabilities over a broader frequency
range. Additionally, it establishes a basis for future investigations under different dissipation sources
and guides a mechanical design approach influenced by both the type and amount of dissipation.
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1 Introduction

The stability of discrete and continuous mechanical systems is a fundamental problem in solid and struc-
tural mechanics [1, 2, 3], with renewed attention from today’s scientists and engineers committed to
advancing emerging key technologies, encompassing soft robotics [4, 5, 6, 7, 8] and energy harvesting [9,
10, 11, 12, 13, 14, 15].

The stability of systems subjected to non-conservative (living) loads requires analysis based on the
equations of motion and their mechanical response may not be intuitive. Two paradigmatic instability
phenomena commonly observed in non-conservative structural systems are flutter and parametric reso-
nance. Flutter is an oscillatory instability found in aeroelasticity and rotor dynamics, but also in biology
[16], due to the ‘follower’ character of the load and mathematically interpreted as a Hopf bifurcation [17].
In structural mechanics, basic systems that exhibit flutter when subjected to a concentrated follower load
at their free end are, among the others, the Ziegler’s double pendulum [18, 19], the Beck’s column [20],
and the Pflüger’s column [21]. On the other hand, parametric excitation occurs when the characteristics
of the system, such as mass, damping and stiffness vary with time according to a given law. If this varia-
tion is harmonic with a certain critical frequency, parametric resonance occurs and the amplitude of the
system oscillation grows exponentially. Some relevant examples of this phenomenon can be found in: (i)
a pendulum with in-time variable length [22, 23]; (ii) the Bolotin beam [24], namely a hinged-supported
rod subject to a time-harmonic compressive force with a non-null average value; and (iii) the moving
mass systems [25]. Recent investigations have also addressed the coupling effects between parametric
excitations and forced excitations [26], the dynamic stability of beams with parametric excitation and
internal resonance [27], and the nonlinear dynamics of functionally graded beams under the influence of
both parametric and external excitations [28]. Regarding structural systems under parametric excitation,
an interesting problem is the stabilization of an unstable configuration by external oscillatory loading [29,
30, 31, 32, 33, 34, 35, 36], which is somehow the dynamic analogous to the structural restabilization of
the trivial path under monotonic quasi-static loading [37, 38]. The Kapitza’s inverted pendulum [39] is
the simplest example of stabilization by parametric excitation of the vertical upward configuration of an
inverted pendulum in a gravity field.

The complexity in treating non-conservative systems may lead to non-trivial effects of damping on
the stability and subsequently to unexpected mechanical responses. Indeed, dissipation can also have a
destabilising role in non-conservative systems. This counter-intuitive effect is known as the destabilization
paradox [40, 41, 42, 43, 44, 45, 46], whose clear evidence is provided by a finite reduction in the critical
flutter load due to the presence of an infinitesimal amount of internal linear damping even in simple models
such as the Ziegler’s double pendulum or the Beck’s column [47, 48]. Damping destabilization has also
been observed in the nonlinear regime as a result of both internal and external nonlinear damping sources.
The Ziegler’s double pendulum and the Beck’s column equipped with a Van-der-Pole-like internal damping
[48] show qualitatively the same dynamic behaviour close to a Hopf bifurcation and the so-called Hard
Loss of Stability phenomenon [49]. The simultaneous presence of internal and external damping forms,
although of the linear type only, has been considered in [50, 51]. The simultaneous presence of nonlinear
damping due to material behavior (internal damping) and fluid-structure interactions (external damping),
for a Beck’s column, in the presence of follower and dead loads, has been investigated analytically in [52],
via the Method of Multiple Scales, revealing the double nature of the considered damping forms, which
can be beneficial or detrimental in terms of stable or unstable bifurcated equilibrium of the system.

Interestingly, although commonly thought to be strictly associated with non-conservative systems, it
has recently been shown that flutter instability and the destabilization paradox also occur in conservative
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systems when subjected to non-holonomic constraints [53, 54].
Within this framework, the effect of viscous damping on the nonlinear dynamics of resonant self-

tuning variable-length structures is investigated in the present article. More specifically, the system under
consideration is very similar to the lumped-mass variable-length cantilever model usually considered
to explain parametric excitation, but with the essential difference that the variable length ℓ(t) is no
longer controlled in time t, as it becomes an additional degree of freedom for the system. Its release
from control implies that the variable length ℓ(t) is governed by an interface algebraic equation at the
sliding sleeve exit, corresponding to a force balance at this point that includes the sliding component of
the constraint reaction, which has an outward direction. This reaction component is nonlinear, being
quadratic in the moment reaction, and has been shown in [55, 56, 57] to have a deep connection with
configurational mechanics [58, 59], since the variable length ℓ(t) is representative of a configurational
parameter for the structural system. When this system is in a gravitational field parallel to the sliding
direction and a transverse harmonic motion is imposed on the constraint, it has been shown theoretically
and experimentally that the variable-length can self-tune around a finite value through a periodic or
quasi-periodic response, depending on the main parameters of the system and the motion. Specifically,
the theoretical analysis was carried out considering the presence of dissipation only in the numerical
integration of the nonlinear equations of motion, while neglecting it for obtaining an analytical expression
for the average value of the self-tuning length from the asymptotic analysis.

The present research aims to fill the gap for theoretically predicting the dissipation effect on the
sustained motion around the self-tuning variable length. As a first step in this direction, all the possi-
ble sources of dissipation are modelled by linear dampers, which model has been previously validated
by experiments [60, 61], acting on the lumped mass in the transverse and longitudinal directions. The
mechanical model for the variable-length structural system under consideration is presented in Section
2, together with the fully nonlinear version of the equations of motion and its approximated nonlinear
counterpart, governing a coupled two-degree-of-freedom system. The asymptotic analysis is carried out
in Section 3 by a straightforward expansion perturbation approach, showing that the self-tuning vari-
able length is given by either the unique or three roots of a seven-order polynomial, and providing the
corresponding first-order periodic limit cycles. This is complemented by the Floquet stability analysis,
revealing the monostable and bistable dynamic response in the small-amplitude periodic limit-cycle as
the system parameters are varied. More specifically, it is found that the viscous damping can play ei-
ther a stabilizing or a destabilizing role. The reliability of these predictions is confirmed in Section 5
by comparison with results from the numerical integration of the fully nonlinear equations of motion,
also showing the validity limits of the present framework governed by the smallness parameter. Finally,
conclusions are drawn in Section 6.

2 Mechanical problem and equations of motion

The mechanical system is presented together with the dissipation model. The equations of motion, derived
in their full nonlinear version in Appendix A, are summarized together with the corresponding nonlinear
approximation considered to analyze the equivalent two-degree-of-freedom system.

2.1 Mechanical system and variable-length model

The effect of viscous damping on the nonlinear planar dynamics of the mechanical system sketched in Fig.
1 is addressed. The planar motion occurs in time t within the Cartesian absolute reference system X–Y .
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The system is composed by an elastic rod of length L, whose center line is described by the curvilinear
coordinate s ∈ [0, L], having a lumped mass m attached at one end (s = L) and constrained at the other
end for the set s ∈ [0, L − ℓ(t)] by a frictionless sliding sleeve with sliding direction parallel to the Y
axis. The time-varying length ℓ(t) ∈ [0, L] measures the portion of the rod not constrained by the sliding
sleeve, therefore it represents a configurational parameter of the system and introduces the formulation
of a moving boundary problem [62, 63, 64, 65, 66, 67].

The rod, straight in its undeformed state, is assumed inextensible and unshearable, and therefore it
is modelled as a one-dimensional polar continuum, made of a deformable axis and of rigid cross-sections
remaining normal to the rod’s center line at every deformation state [68]. It follows that the rod’s
kinematics is completely described by the rotation field θ(s, t) measuring the inclination (positive when
clockwise) of the rod’s center line with respect to the Y –axis. The bending constitutive response is
modelled through the linear relation M(s, t) = Bθ′(s, t), where M(s, t), θ′(s, t), and B are respectively
the internal moment, the rod’s curvature, and the bending stiffness, while a prime ′ denotes differentiation
with respect to the curvilinear coordinate s.

m

B

Y

g

X

θL
y

X=x+u (t)g

(t) y (t)L

x (t)L (t)

L

s

Y

u (t)g
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Figure 1: (a) Reference -undeformed- and (b) current -deformed- configurations of a massless elastic rod
of bending stiffness B and total length L, having a lumped mass m attached at one end (s = L) and
constrained at the other one (s ∈ [0, L − ℓ(t)]) by a frictionless sliding sleeve. The constraint oscillates
orthogonal to the gravity acceleration field g (opposite to the Y axis) by the displacement ug(t). The
lumped mass may display an oscillatory suspended motion under an harmonic motion ug(t). The effect of
dissipation mechanisms on such a suspended motion is investigated with reference to a viscous damping
force, linear in the (absolute) velocity components through the damping coefficients cX(t) and cY (t)
dependent on the variable external length ℓ(t) and on the two dimensionless damping parameters ζX and
ζY . For ease of illustration, the viscous dampers are shown in the reference configuration only (a).

For analyzing the system under a motion ug(t) along theX axis for the sliding sleeve, it is instrumental
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to introduce a relative reference system x–y attached to the oscillating sliding sleeve, related to the
absolute reference system X–Y through

X(s, t) = x(s, t) + ug(t) , Y (s, t) = y(s, t) . (1)

The relative coordinates x(s, t) and y(s, t) describing the deformed configuration can be obtained from
the integration of kinematic constraint provided by the inextensibility condition

x′(s, t) = sin θ(s, t) , y′(s, t) = cos θ(s, t) , (2)

and by taking into account the boundary conditions imposed by the sliding sleeve

x(s, t) = 0, θ(s, t) = 0, s ∈ [0, L− ℓ(t)]. (3)

A gravitational field is considered as an acceleration g in the opposite direction to the Y axis. Subject
to this field, if the constraint is not moving and the flexible element is not bent, the rod would simply
slip inside the sliding sleeve with a constant acceleration along Y (and a null acceleration along X) by
realizing a free-fall motion. However, whenever the rod displays a non-null curvature at the sliding sleeve
exit (and equivalently a non-null moment there, M(L+ − ℓ(t), t) = Bθ′(L+ − ℓ(t), t) ̸= 0), a non-null
reaction RY (t) component

RY (t) =
B [θ′ (L+ − ℓ(t))]

2

2
, (4)

with direction following the Y -axis is realized at the sliding sleeve exit, contrasting the rod’s insertion into
the constraint. In this case, the rod’s acceleration becomes non-uniform in time along both components
and can also change in sign. Henceforth, attention is restricted to harmonic oscillations of the sliding
sleeve constraint along the X axis as

ug(t) = u cosωt, (5)

where u and ω are respectively the sliding sleeve oscillation amplitude and angular frequency (the latter
connected to the frequency f through ω = 2πf). It has been numerically and experimentally shown that
the considered system may display a stable dynamics around an average external length ℓm realizing,
in a sense, a suspended state for the mass m in [61]. Moreover, by neglecting any dissipation effects,
an analytical estimation of the average external length ℓm has been provided through an asymptotic
expansion in [61] for the case of small u/ℓm as

ℓ±m
ℓω

=
3

√
1

2
+

√
1

4
± σ3

27
+

3

√
1

2
−
√

1

4
± σ3

27
, (6)

where

σ =
ℓ2u
ℓ2ω

, ℓu =

√√√√3u

2

√
B

mg
, ℓω =

3

√
3B

mω2
. (7)

Equation (6) shows a dependence of the average external length ℓm on the inertial and elastic prop-
erties of the system, m and B, and on the parameters that describe the motion of the sliding sleeve, u
and ω, in addition to the gravity acceleration g.
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To access the effect of dissipation mechanism on the suspended dynamics for the lumped mass, the
estimation for the average length ℓm is extended here to consider the action of a damping force on the
lumped mass, assumed linear in the (absolute) velocity through the time-varying damping coefficients
cX(t) and cY (t)

F d
X(t) = −cX(t)Ẋ (L, t) , F d

Y (t) = −cY (t)Ẏ (L, t) , (8)

where the overdot denotes differentiation with respect to time t. Following [60, 61], the time-dependence
of the damping coefficients is implicitly considered through the classical damping law adopted in the
linear analysis of clamped systems and extended to include the variable external length ℓ(t) as

cX(t) = 2 ζX

√
3mB

ℓ3(t)
, cY (t) = 2 ζY

√
3mB

ℓ3(t)
, (9)

where {ζX , ζY } ≥ 0 are constant, dimensionless damping parameters, respectively along the transverse
and longitudinal direction. Although dissipation can stem from various additional sources (such as ma-
terial viscosity, friction, and impact phenomena at the sliding constraint), the adopted damping model,
assuming equal damping ratios in the transverse and longitudinal directions (ζX = ζY ), has been shown
to yield theoretical predictions that closely match experimental observations [60, 61], including the tra-
jectories of the lumped mass. Therefore, the viscous damping formulation (8), with length-dependent
damping coefficients cX(ℓ(t)) and cY (ℓ(t)) as defined in Eqn. (9), is employed throughout this study as a
suitable first step for exploring the stabilizing and destabilizing effects of damping in resonant self-tuning
variable-length structures. Exploring more complex damping models could be a valuable direction for fu-
ture work, enabling more refined modeling of the self-oscillating system in similar dissipative environments
or even under different dissipative conditions governed by different damping laws.

The present extension of the dynamic analysis to take into account of damping shows that the average
external length ℓm as well as the limit cycle for the transverse coordinate of the mass have no dependence
on ζY . Differently, the limit cycle for the the longitudinal coordinate of the mass and the stability analysis
are affected by both ζX and ζY . For conciseness, however, the stability analysis in Sect. 4 is restricted
to the special case ζY = ζX .

2.2 Equations of motion

With reference to the unknown time-varying relative coordinates xL(t) = x(s = L, t) and yL(t) = y(s =
L, t) of the lumped mass m and of the external length ℓ(t), the equations of motion of the mechanical
system under consideration (Fig. 1) can be derived via the extended Hamilton’s principle (see Appendix
A) as


Bθ′′(s, t) +Nx(s, t) cos θ(s, t)−Ny(s, t) sin θ(s, t) = 0, s ∈ (L− ℓ(t), L]

N ′
x(s, t) = 0, s ∈ [0, L− ℓ(t)) ∪ (L− ℓ(t), L]

N ′
y(s, t) = 0, s ∈ [0, L− ℓ(t)) ∪ (L− ℓ(t), L]

(10)

complemented by the inextensibility conditions (2), the geometric boundary conditions (3), and the
natural boundary conditions
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

Nx(L, t) +m [ ẍL(t) + üg(t)] + cX(t) [ẋL(t) + u̇g(t)] = 0,

Ny(L, t) +mÿL(t) + cY (t) ẏL(t) +mg = 0,

Bθ′(L, t) = 0,

Nx(0, t) = 0,

Ny(0, t) = 0,

Ny(L
+ − ℓ(t), t)−Ny(L

− − ℓ(t), t) +
Bθ′ 2(L+ − ℓ(t), t)

2
= 0,

(11)

where Nx(s, t) and Ny(s, t) are Lagrange’s multipliers, representative of the internal force components
along the x and y axis, respectively, and the last boundary condition specifies that there is a discontinuity
in Ny(s, t) at the sliding sleeve exit, s = L− ℓ(t), which corresponds to the presence of a configurational
force RY as defined by equation (4). It is noted that at the axial coordinate s = L− ℓ the rotation θ(s)
is null and, as a consequence, the discontinuity in Ny also results in a discontinuity in the axial force.

Under the case of moderate rotations of the rod cross-sections (|θ(s, t)| ≫ θ2(s, t) ), these equations
reduce to the following two nonlinear and coupled ordinary differential equations (see Appendix A for
details) 

mẍL(t) + cX(t) ẋL(t) +
3B xL(t)

y3L(t)
= u

(
mω2 cosω t+ cX(t)ω sinω t

)
,

m ÿL(t) + cY (t) ẏL(t)−
9B x2L(t)

2 y4L(t)
= −mg,

(12)

which are complemented by the following approximated relation for the external length ℓ(t) (see Appendix
A for details)

ℓ(t) = yL(t) +
3x2L(t)

5 yL(t)
. (13)

It is noted that the elastic forces appearing in the LHS of Eqn. (12) can be derived from the elastic
potential approximated as 3Bx2L(t)/(2y

3
L(t)).

The following non-dimensional variables are introduced

τ = ω t, ξ(τ) =
xL(t(τ))

ℓm
, µ(τ) =

yL(t(τ))− ℓm
ℓm

, λ(τ) =
ℓ(t(τ))

ℓm
, (14)

together with the positive non-dimensional parameters

U =
u

ℓm
, ρ =

ℓm
ℓω

, (15)

where the average external length ℓm is unknown at this stage and is expected to depend also on the
damping parameters ζX and ζY .

1 Through these dimensionless quantities, the Differential-Algebraic
system of equations (DAE) provided by Eqns. (12) and (13) can be rewritten in terms of three unknown
dimensionless functions ξ(τ), µ(τ), and λ(τ) as the following dimensionless expressions

1It is noted that in general the average length ℓm of the length ℓ(t) differs from the average value ym of the coordinate
yL(t). However, under the small oscillation assumption and with reference to the truncation order considered in this work,
this discrepancy is neglected and the approximation ym ≈ ℓm holds.
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

∗∗
ξ(τ) +

2 ζX
ρ3/2

∗
ξ(τ)

λ3/2(τ)
+

1

ρ3
ξ(τ)

(1 + µ(τ))3
= U

(
cos τ +

2 ζX
ρ3/2

sin τ

λ3/2(τ)

)
,

∗∗
µ(τ) +

2 ζY
ρ3/2

∗
µ(τ)

λ3/2(τ)
− 3

2ρ3
ξ2(τ)

(1 + µ(τ))4
= − 3ρ

4σ2
U2,

λ(τ) = 1 + µ(τ) +
3

5

ξ2(τ)

1 + µ(τ)
,

(16)

where the superscript symbol ∗ denotes differentiation with respect to the dimensionless time τ .
Finally, it is noted that the algebraic variable λ(τ) could be eliminated from the differential-algebraic

system (16) without loss of generality by substituting it directly into the first two equations, thereby
reformulating the system as a set of nonlinear ordinary differential equations (ODEs),

∗∗
ξ(τ) +

2 ζX
ρ3/2

∗
ξ(τ)− U sin τ(

1 + µ(τ) +
3

5

ξ2(τ)

1 + µ(τ)

)3/2
+

1

ρ3
ξ(τ)

(1 + µ(τ))3
− U cos τ = 0,

∗∗
µ(τ) +

2 ζY

ρ3/2

∗
µ(τ)(

1 + µ(τ) +
3

5

ξ2(τ)

1 + µ(τ)

)3/2
− 3

2ρ3
ξ2(τ)

(1 + µ(τ))4
+

3ρ

4σ2
U2 = 0.

(17)

Nevertheless, the DAE formulation (16) is adopted in the following, as it is instrumental in maintaining
a formally simpler structure of the equations.

Once the functions ξ(τ) and µ(τ) and, in turn xL(t) and yL(t), are obtained, the deformed configura-
tion of the entire rod axis at varying time can be evaluated through the solution of the elastica equation
reported in Appendix A.

3 Perturbation analysis

The presence of nonlinearities and coupling inherent to the DAE system (16) render the attainment of
an analytical solution a challenging endeavour. In this Section, this issue is overcome by means of a
perturbation method, i.e., a straightforward asymptotic expansion [69], which allows the dynamics of the
system under damping to be treated analytically.

3.1 Asymptotic periodic solutions

Under the assumption of a small normalized amplitude U of the sleeve oscillations, the perturbation
approach is used to investigate small amplitude oscillations of the rod around its straight configuration,
described by

xL = θL = 0, yL = ℓ = ℓm, or, equivalently ξ = µ = 0, λ = 1. (18)

More specifically, with reference to a small positive parameter ε (0 < ε ≪ 1), the dimensionless sliding
sleeve oscillation amplitude U is rescaled as

U = εU0, (19)
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while no a-priori assumption or rescaling is adopted for the other parameters (ρ, σ, ζ) in Equations (16).
It is worth to notice in this respect that also ℓm is not rescaled in the following perturbation procedure,
i.e. it is considered of order 1, thus entailing u of the same order of U , Eqn. (15).

Under the above assumptions, the normalized displacement functions ξ(τ) and µ(τ) of respective
order ε and ε2 can satisfy Equations (16), therefore the following rescaled and expanded expressions are
considered

ξ (τ) = ε [ξ0 (τ) + εξ1 (τ) + ...] , µ (τ) = ε2 [µ0 (τ) + εµ1 (τ) + ...] . (20)

Using the expressions (20) into the dimensionless equations of motion (16)1,2, replacing λ(τ) by
considering the algebraic equation (16)3, and collecting terms with the same power of ε leads to an
infinite set of perturbation problems, Pn (n = 0, ...,∞), to be solved sequentially. The perturbation
problems associated with the two smallest orders of ε are the P0 problem

P0 :


∗∗
ξ0 (τ) +

2 ζX
ρ3/2

∗
ξ0 (τ) +

1

ρ3
ξ0 (τ) = U0

(
cos τ +

2 ζX

ρ3/2
sin τ

)
,

∗∗
µ0 (τ) +

2 ζY
ρ3/2

∗
µ0 (τ) = − 3ρ

4σ2
U2
0 +

3

2ρ3
ξ20 (τ) ,

(21)

and the P1 problem

P1 :


∗∗
ξ1 (τ) +

2 ζX
ρ3/2

∗
ξ1 (τ) +

1

ρ3
ξ1 (τ) = 0,

∗∗
µ1 (τ) +

2 ζY

ρ3/2
∗
µ1 (τ) =

3

ρ3
ξ0 (τ) ξ1 (τ) .

(22)

It is noted that the P0 and P1 problems are both described by a system of two linear ordinary
differential equations, with a nonlinear weak coupling for µn(τ) in ξn(τ) (n = 0, 1). More specifically, the
solution ξn(τ) can be independently obtained from the first equation of the Pn problem and also appears
as the forcing term in the second equation of the same problem.

By assuming

(i.) ρ ̸= 0, and (ii.) ρ ̸= 1 if ζX = 0 or ζX ̸= 0 if ρ = 1, (23)

the particular solution of the P0 problem (i.e., neglecting the homogeneous solution for the same P0

problem, which decays over time and is thus not relevant for determining the system’s long-term periodic
motion), hereafter referred to as the generating solution, can be expressed in the following closed form:

ξ0 (τ) = U0 [a1 cos τ + a2 sin τ ] , µ0 (τ) = U2
0 [b1 cos 2τ + b2 sin 2τ ] , (24)

with a1, a2, b1, and b2, given as

a1 =
ρ3(1− ρ3 − 4ζ2X)

(1− ρ3)2 + 4ρ3ζ2X
, a2 =

2ρ3/2ζX
(1− ρ3)2 + 4ρ3ζ2X

,

b1 =
3

16

(a22 − a21)ρ
3/2 − 2a1a2ζY

ρ3/2(ρ3 + ζ2Y )
, b2 =

3

16

(a21 − a22)ζY − 2a1a2ρ
3/2

ρ3/2(ρ3 + ζ2Y )
,

(25)

provided that the following constraint between ρ, σ, and ζ holds

9
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ρ(ρ3 + σρ− 1)(ρ3 − σρ− 1) + 4ζ2X(ρ4 − σ2) = 0, (26)

which in dimensional terms is equivalent to

ℓm
(
ℓ3m − ℓ3ω − ℓmℓ2u

) (
ℓ3m − ℓ3ω + ℓmℓ2u

)
+ 4ζ2Xℓ3ω

(
ℓ4m − ℓ4u

)
= 0. (27)

Equation (26) imposes a constraint on the parameters ρ, σ, and ζX and must be enforced to eliminate
the so-called secular terms in the solution of the DAE problem (16). This condition is essential to
prevent time-divergent behavior and to reveal the system’s bounded periodic motion. Specifically, a
bounded response is obtained by first solving the initial equation of the P0 problem, then substituting
this solution into the second equation and solving it accordingly. In this process, the constant term in
the forcing function of the second equation of problem P0 is set to zero, as its presence would lead to a
time-divergent response otherwise. Eliminating this term is a necessary condition for ensuring bounded
solutions, analogous to standard practices in perturbation methods such as the Method of Multiple Scales,
where the coefficient of the resonant term in the forcing function is set to zero to suppress secular terms.
Accordingly, equation (26) serves as a solvability condition required to guarantee a bounded solution.

Once the roots ρ are evaluated from (26), a corresponding set of coefficients a1, a2, b1, and b2 can be
computed for each one of the positive value of the roots ρ, realizing different harmonic motions in terms
of amplitude, frequency, and phase shifting. With this regard, the solution ξ0(τ) and µ0(τ) (24) can be
rewritten in the equivalent form

ξ0 (τ) = aU0 cos(τ + α), µ0 (τ) = b U2
0 cos(2τ + β), (28)

with

a =
√
a21 + a22, b =

√
b21 + b22, tanα = −a2

a1
, tanβ = −b2

b1
, (29)

where the amplitudes a and b and phase shifts α and β of the generating solution depend nonlinearly on
the dimensionless parameters ρ, ζX and ζY . However, approximated expressions are derived in Section
3.3 under the assumption of small values of ζX and ζY and provide more explicit indications about the
dependence of the amplitude parameters and phase shifts on the damping parameters.

Interestingly the longitudinal damping parameter ζY affects only the periodic solution in the longitu-
dinal direction, µ(t), while it does not affect the dimensionless average length ρ and the periodic solution
in the transverse direction, ξ(τ). Differently, the transverse damping parameter ζX affects the periodic
solution in both transverse and longitudinal directions, ξ(τ) and µ(τ), as well as in the parameter ρ.

In conclusion of this Section, it is observed that the P1 problem (22) only admits the trivial solution
ξ1 (τ) = µ1 (τ) = 0 and therefore, by neglecting higher order terms in the expansion (20), the normalized
displacement functions ξ(τ) and µ(τ) are described by the following harmonic functions

ξ(τ) ≃ U [a1 cos τ + a2 sin τ ] = aU cos(τ + α),

µ(τ) ≃ U2 [b1 cos 2τ + b2 sin 2τ ] = b U2 cos(2τ + β),
(30)

representing the normalized planar motion of lumped mass as the result of the harmonic sliding sleeve
oscillation driven by the small normalized amplitude U .

Finally, it is noted that the perturbation method used to derive the analytical solution (30) is asymp-
totically accurate up to the considered order. To obtain higher-order corrections, alternative meth-
ods—such as the strained parameter method or the Method of Multiple Scales [69]—can be employed.
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These techniques introduce additional variables or parameters that allow to eliminate secular terms that
may emerge in higher-order perturbation analyses.

3.2 Average external length ℓm and damping influence

The expansion of Equation (27) leads to a seventh degree polynomial in ρ,

ρ7 − 2(1− 2ζ2X)ρ4 − σ2ρ3 + ρ− 4ζ2Xσ2 = 0, (31)

which, for the Descartes’ rule of signs, provides 3 or 1 positive solutions for every {σ, ζX} > 0 and 2
positive solutions when ζX = 0. It is recalled that the case σ = 0 is excluded due to condition (23)2. To
address the transition from 3 to 1 positive solutions for ρ, it is instrumental to consider that Equation
(31) implies σ as

σ(ρ, ζX) =

√
ρ
(ρ3 − 1)2 + 4ζ2Xρ3

ρ3 + 4ζ2X
, (32)

and, assuming continuity, the multiplicity of the roots ρ is realized when

∂σ(ρ, ζX)

∂ρ
= 0. (33)

This analysis leads to the parametric curve σ̂(ρ)–ζ̂X(ρ),
σ̂(ρ) =

√
1− 8ρ3 + 6ρ6 +

√
1− 16 (ρ3 − 7ρ6 + 6ρ9)

√
6 ρ

,

ζ̂X(ρ) =

√
−1 + 8ρ3 − 8ρ6 +

√
1− 16 (ρ3 − 7ρ6 + 6ρ9)

4
√
2ρ ρ

,

(34)

which splits the σ–ζX plane in two regions, differing in the number (1 or 3) of positive roots ρ. The
parametric curve σ̂(ρ)–ζ̂X(ρ) displays a cusp at the maximum ζ̂X occurring for

ρ =

3

√√√√−5 + 2
√
241 cos

[
1

3
arctan

(
36

√
7257

2143

)]
2

3
√
32

≈ 0.69785,

σ = σ̂(ρ) ≈ 0.62709,

ζX = max
ρ

{
ζ̂X(ρ)

}
= ζ̂X(ρ) ≈ 0.52256.

(35)

It is also observed that the parametric curve has a stationary point (dσ̂/dζ̂X=0) at
ρ =

1
3
√
2
≈ 0.79370,

σ = σ̂
(
ρ
)
=

1
3
√
4
≈ 0.62996,

ζX = ζ̂X
(
ρ
)
=

1

2
.

(36)
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The positive solutions ρ to the seventh degree polynomial in ρ, Eqn. (31), can not be described through
a generic explicit expression ρ(σ, ζX). Their numerical evaluation is reported as a surface in the σ–ζX–
ρ space in Fig. 2(a), its sections at constant ζ within the ρ–σ plane in Fig. 2(c) and at constant σ
within the ρ–ζX plane in Fig. 2(d). The σ–ζX regions corresponding to only 1 (white) or 3 (light blue)
positive solutions ρ are shown in Fig. 2(b). The separation between these two regions is identified by the
condition dσ/dρ = 0, drawn as a thick continuous line, and also included in the other three panels (a, c,
and d). The cusp and the stationary points, respectively corresponding to

{
σ ≈ 0.62709, ζX = 1/2

}
and{

σ ≈ 0.62996, ζX ≈ 0.52256
}
can be appreciated from the inset of Fig. 2(b).
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Figure 2: (a) Surface in the σ–ζX–ρ space representing the physically meaningful solutions of the poly-
nomial (31) and its sections (c) at constant σ within the ρ–ζX plane and (d) at constant ζX within the
ρ–σ plane (bottom, right). (b) Pair sets of σ–ζX providing only 1 or 3 positive solutions ρ are shown as
white and light blue regions, respectively. The thick colored curve appearing in all the four subfigures
is associated to points satisfying dσ/dρ=0. The particular values of the parameters are σ ≈ 0.62709,

ζX ≈ 0.52256, ρ ≈ 0.69785, σ ≈ 0.62996, ζX = 1/2, and ρ = 1/ 3
√
2 ≈ 0.79370.

Despite the impossibility of providing a generic explicit expression for ρ(σ, ζX), this is provided in
some limit cases and also through approximated relations in the case of small damping parameters ζX
and ζY .
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Null transverse damping (ζX = 0): Since null ρ values are excluded, two positive solutions for the
average length are found

lim
ζX→0

ρ(σ, ζX) = ρ0(σ) =

{
ρ+0 (σ)

ρ−0 (σ)
⇒ lim

ζX→0
ℓm =

{
ℓ+m
ℓ−m

, (37)

being ρ±0 = ℓ±m/ℓω and ℓ±m given by Eqn. (6), as obtained in [61].

Infinite transverse damping (ζX → ∞): A unique positive solution for the average length is found

lim
ζX→∞

ρ =
√
σ ⇒ lim

ζX→∞
ℓm =

√√√√3u

2

√
B

mg
. (38)

Damping-independent averaged state (ρ = ρ = 1/ 3
√
2, σ = σ = 1/ 3

√
4): The dependence on the

transverse damping ζX in Equation (26) disappears when

σ = ρ2, (39)

and by enforcing such a condition in Equation (26) it is obtained that a damping-independent averaged
external length ρ is realized for a special sliding sleeve motion σ,

ρ = ρ =
1
3
√
2
, σ = σ =

1
3
√
4
, ∀ ζX ≥ 0. (40)

Under the condition (40), it is remarkable that the complex expressions of the amplitude parameters a
and b and the phases α and β (29) reduce to

a = 1, tanα = − 4
√
2 ζX

1− 8 ζ2X
,

b =
3

8
√
1 + 2ζ2Y

, tanβ =
√
2
ζY − 8ζX − 48ζ2XζY + 64ζ3X + 64ζ4XζY
1 + 16ζXζY − 48ζ2X − 128ζ3XζY + 64ζ4X

,
(41)

showing that the transverse motion amplitude a is constant (and, accordingly, damping-independent),
while the longitudinal motion amplitude b is independent of the transverse damping parameter ζX and
decreases for increasing values of the longitudinal damping parameter ζY , with a finite upper bound value
b = 3/8 for ζY = 0.

It is also noted that, when ζ < ζX ≈ 0.52256, two further positive roots ρ may exist in addition to ρ
for σ = σ.

3.3 Case of small damping parameters (ζY = rζX)

Although the average external length, the amplitudes, and the phase shifts characterizing the asymptotic
harmonic solution can not be analytically described in the general case through simple explicit expressions,
their series expansion can be obtained for small values of ζ ≥ 0 ruling the the damping parameters ζX
and ζY through

13
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ζX = ζ, ζY = rζ, (42)

where r ≥ 0 is a dimensionless parameter defining the ratio between the two damping parameters.
By expanding Equation (31), the following expression is obtained for the normalized average external

length

ρ(σ, ζ) = ρ0(σ) + k(σ) ζ2 + o(ζ2), (43)

where ρ0(σ) is one of the real positive solutions of Equation (26) when ζ = 0, while k(σ) is a dimensionless
coefficient given as

k =
4(σ2 − ρ40)

1− 3σ2ρ20 − 8ρ30 + 7ρ60
. (44)

In particular, Equation (43) shows that expansion for small values of ζ associated with the solution
ρ0 = 0 of Equation (26) is given by ρ(σ, ζ) ≃ 4σ2ζ2.

Instead, the expansion corresponding to ρ0 = ρ±0 can be expressed in the form ρ(σ, ζ) ≃ ρ±0 (σ) +
k±(σ)ζ2, where k± denotes the value of k (44) obtained for ρ0 = ρ±0 .

For completeness, it is noted that a study of k± as a function of σ reveals that k− < 0 for σ > 0,
k+ > 0 for 0 < σ < 1/ 3

√
4, and k+ < 0 for σ > 1/ 3

√
4. Therefore, under the assumption of small damping

ζ, it can be concluded that:

• the root ρ(σ, ζ) associated with ρ−0 always decreases with increasing damping ζ;

• the root ρ(σ, ζ) associated with ρ+0 increases if σ < 1/ 3
√
4 and decreases if σ > 1/ 3

√
4 with increasing

damping ζ;

• the root ρ(σ, ζ) associated with ρ0 = 0 always increases with increasing damping ζ.

The approximated expression can be obtained through series expansion for the coefficients a1, a2, b1,
and b2, appearing in the asymptotic solution derived in Section 3.1. For the case ρ0 = ρ±0 (i.e., ρ0 ̸= 0),
these can be expressed in the form

a1 = − ρ30
ρ30 − 1

+
ρ20[4ρ0 + 3k(ρ20 − 1)]

(ρ30 − 1)3
ζ2 + o(ζ3),

a2 =
2ρ

3/2
0

(ρ30 − 1)2
ζ + o(ζ2),

b1 = − 3

16

ρ30
(ρ30 − 1)2

+
3

16

4 + 8ρ30 + 3kρ20(ρ
6
0 − 1) + 4r(ρ30 − 1) + r2(ρ30 − 1)2

(ρ30 − 1)4
ζ2 + o(ζ3),

b2 =
3

16

ρ
3/2
0 4 + r(ρ30 − 1)]

(ρ30 − 1)3
ζ + o(ζ2).

(45)

and, accordingly, the amplitude coefficients, a and b, and the phase shifts, α and β, in Equation (28)
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follow as

a =
ρ30

|ρ30 − 1|
+

2− 4ρ30 + 3kρ20(1− ρ30)

|ρ30 − 1|3
ζ2 + o(ζ3),

b =
3

16

ρ30
(ρ30 − 1)2

+
3

16

8− 16ρ30 + 6kρ20(1− ρ60)− r2(ρ30 − 1)

2(ρ30 − 1)4
ζ2 + o(ζ3),

tanα =
2

ρ
3/2
0 (ρ30 − 1)

ζ + o(ζ2),

tanβ =
4 + r(ρ30 − 1)

ρ
3/2
0 (ρ30 − 1)

ζ + o(ζ2).

(46)

Equations (46) show the main effect of damping on the amplitude coefficients (a and b) and on
the phase shifts (α and β), namely, the presence of phase shifts directly proportional to the damping
coefficient ζ, and the presence of higher order terms, proportional to the square of ζ, in the expressions
of the amplitude coefficients.

Regarding the expansion for the case ρ0 = 0, the following expressions hold

a1 = 64σ6 ζ6 + o(ζ7), a2 = 16σ3 ζ4 + o(ζ5),

b1 = −48σ6(r − 1)

r2
ζ6 +

192σ6

r
ζ8 + o(ζ9), b2 = −6σ3

r
ζ4 + o(ζ5),

(47)

which yield

a = 16σ3 ζ4 + o(ζ5), b =
6σ3

r
ζ4 + o(ζ5),

cotα = −4σ3 ζ2 + o(ζ3), cotβ = −2σ3(r − 1)

r
ζ2 + 32σ3 ζ4 + o(ζ5).

(48)

The analytical solution (28), as well as small damping approximations (45)-(48), describes periodic
motions of the mass-rod system and shows analytically the dependence of such motions on the damping
coefficient ζ and on σ, which depends on the amplitude and frequency of oscillation of the sliding sleeve.
Such periodic motions (limit cycles of the system) take place around a reference position of the lumped
mass m corresponding to the undeformed state with length of the rod outside the sliding sleeve equal to
the average external length ℓm = ρ(σ, ζ) ℓω, and therefore to the lumped mass relative coordinates xL = 0
and yL = ℓm.

4 Stability of the asymptotic periodic solutions for ζX = ζY = ζ

In order to assess the stability of the periodic motions of the system identified in the previous sections,
a semi-analytical procedure, grounded on the Floquet’s theory, is performed. To this end, restricting the
attention to the case of coincident damping parameters (ζX = ζY = ζ) for conciseness, the two second-
order differential equations of motion (16)1,2 can be recast as the following system of four first-order
differential equations, which is nonlinear in the dimensionless amplitude U
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

∗
v1 (τ) = v2 (τ) ,

∗
v2 (τ) = − 2ζ

ρ3/2
v2 (τ)

λ3/2 (τ)
− 1

ρ3
v1 (τ)

(1 + v3 (τ))3
+ U

(
cos τ +

2ζ

ρ3/2
sin τ

λ3/2 (τ)

)
,

∗
v3 (τ) = v4 (τ) ,

∗
v4 (τ) = − 2ζ

ρ3/2
v4 (τ)

λ3/2 (τ)
+

3

2ρ3
v21 (τ)

(1 + v3 (τ))4
− 3ρ

4σ2
U2,

(49)

where v1 (τ) ≡ ξ (τ) and v3 (τ) ≡ µ (τ), and therefore v2 (τ) ≡
∗
ξ and v4 (τ) ≡

∗
µ (τ), and λ (τ) is given by

the algebraic condition (16)3 as

λ (τ) = 1 + v3 (τ) +
3

5

v21 (τ)

1 + v3 (τ)
. (50)

The Jacobian matrix J(τ) associated with the state-space model (49), governing the motion of the lumped
mass m, follows as

J(τ) =


0 1 0 0

J21 J22 J23 0

0 0 0 1

J41 0 J43 J44

 , (51)

where the values of the non-null matrix coefficients Jij are

J21 = − 1

ρ3(1 + v3(τ))3
+

18ζ

5

v1(τ)

1 + v3(τ)

v2(τ)− U sin τ

ρ3/2λ5/2(τ)
,

J22 = − 2ζ

ρ3/2λ3/2(τ)
,

J23 =
3v1(τ)

ρ3(1 + v3(τ))4
+ 3ζ

(
1− 3

5

v21(τ)

(1 + v3(τ))2

)
v2(τ)− U sin τ

ρ3/2λ5/2(τ)
,

J41 =
3v1

ρ3(1 + v3(τ))4
+

18ζ

5

v1(τ)

1 + v3(τ)

v4(τ)

ρ3/2λ5/2(τ)
,

J43 = − 6v21(τ)

ρ3(1 + v3(τ))5
+ 3ζ

(
1− 3

5

v21(τ)

(1 + v3(τ))2

)
v4(τ)

ρ3/2λ5/2(τ)
,

J44 = − 2ζ

ρ3/2λ3/2(τ)
.

(52)

It is worth noting that the Jacobian matrix J(τ) evaluated for the periodic solution v1(τ) = ξ(τ) and
v3(τ) = µ(τ) given by Equation (30) is periodic with a period T = 2π, namely J(τ +2π) = J(τ) at every
time τ .

The stability of the relevant periodic motion (30) can be assessed through the analysis of the transition
matrix Φ(τ) of the system, provided by

Φ(τ) =
[
X1(τ), X2(τ), X3(τ), X4(τ)

]
, (53)

where the four-dimensional time-variable vectors Xi(τ), i = 1, 2, 3, 4, can be obtained as solution of the
following set of ordinary differential equations
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∗
Xi(τ) = J(τ)Xi(τ), i = 1, 2, 3, 4, (54)

subject to the initial condition

X1(0) = [1, 0, 0, 0]T , X2(0) = [0, 1, 0, 0]T , X3(0) = [0, 0, 1, 0]T , X4(0) = [0, 0, 0, 1]T . (55)

More specifically, the periodic motion (30) is stable when the complex eigenvalues of the associated
transition matrix evaluated at end of the first period, Φ(T ), lie within the unit circle of the complex
plane [70]. For the problem under consideration, the set of ordinary differential equations (54) with
initial condition (55) can be only solved numerically and, to this purpose, the Matlab function ode45 has
been used. Once the transition matrix Φ(τ) is computed, its eigenvalues at the end of the first period
(τ = T ) can be evaluated afterwards, together with the stability assessment of the considered periodic
motion. The stability of the considered periodic motions of the system may also depend on U , since the
transition matrix (53) depends non-linearly on the periodic solution (30) found with the perturbation
approach and defining ξ(τ) and µ(τ) to be proportional to U and U2, respectively.

The semi-analytical stability analysis reveals the existence of a critical parametric curve {σ, ζ} =
{σc(ρ), ζc(ρ)}, that represents the critical conditions for the first-order limit cycles, namely defining their
stable-to-unstable transition. The critical curve {σc(ρ), ζc(ρ)} evaluated for the dimensionless parameter
U = 0.03 is shown in Fig. 3 as a red thick curve superimposed to the surface of Fig. 2(a), and through its
projection superimposed to the respective curves in the ρ–ζ and ρ–σ planes of Fig. 2(c-d). The possible
multistability in the dynamic response is revealed in Fig. 3(b) by showing the pairs σ–ζ associated with a
monostable (M) and a bistable (B) small-amplitude periodic response. It is observed that the monostable
(M) region contains, in addition to the whole region where only one positive solution for ρ exists, also
a portion of the region where three positive solutions for ρ exist. Interestingly, the critical curve σc–ζc
results coincident with the parametric curve σ̂–ζ̂X (for which ∂σ/∂ρ = 0) except in the surrounding of
ζ = σ = 0, where a finger of monostable domain is present in the region where three positive solutions
for ρ exist. More specifically, the multistable character of the system can be described as:

• the monostable domain M can be distinguished in

– the monostable subdomain M0 (defined by ζ > ζX ≈ 0.52256), corresponding to the unique
solution ρ. This solution cannot be associated with any upper or lower solution branch, since
no multiple solutions are never possible by varying σ;

– the monostable subdomain MU , corresponding to the unique solution ρ originated from the
upper branch solution when ζ < ζX ≈ 0.52256;

– the monostable subdomain M(1)
L , corresponding to the unique solution ρ originated from the

lower branch solution when ζ < ζX ≈ 0.52256;

– the monostable subdomain M(3)
L , corresponding to the lower branch solution ρ in the case

when three positive solutions ρ exist;

• the bistable domain B, corresponding to the lower and upper branch solution in the case when three
positive solutions ρ exist (while the central branch is always unstable).

The stability analysis is concluded by analyzing how the normalized displacement U modify the
boundary between the bistable B and the monostable M domains. The critical curve σc–ζc for different

17



Published in European Journal of Mechanics - A/Solids (2025) 114: 105727
doi: https://doi.org/10.1016/j.euromechsol.2025.105727

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

0 1 2 3
0

0.5

1

1.5

2

0
1

1

3
2

2

0.5
1

0 0

0.7(b)(a)

(d)(c )

X

X

X

X

X

X Y ,

Figure 3: As for Fig. 2, but including the critical curve {ζc(ρ), σc(ρ)} (as thick red line) evaluated for
coincident damping parameters (ζX = ζY = ζ) and the dimensionless parameter U = 0.03. The unstable

solutions with a red shading in (a, c, d). Monostable (M0, M(1)
L , M(3)

L , and MU ) and bistable (B)
domains are shown in the σ–ζ plane with different colors in (b).

(although small) normalized displacement values, U = {0.005, 0.01, 0.03, 0.05}, is reported in Fig. 4. It
can be observed that, while a portion of the critical curve is not affected by the magnitude of U , the
portion of curve in the surrounding of σ = ζ = 0 is ‘moving further away’ from the origin by increasing

U , by expanding the monostable domain M(3)
L and shrinking the bistable domain B. The figure is also

complemented by the presence of two crosses, representing the transition condition from periodic to quasi-
periodic motion observed from the numerical simulations presented in Sect. 5.2.2 and reported in Fig.
7. The crosses are at coordinates {σ, ζ} ≃ {0.50, 0.12} and

{
1/ 3

√
4, 0.08

}
and respectively correspond

to a normalized displacement U ≃ 0.032 and 0.035, therefore showing a very good agreement with the
semi-analytically predicted stability loss of the periodic motion by the adjacent line for U = 0.03.
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Figure 4: Effect of the dimensionless displacement U on the critical curve σc–ζc, defining the boundary
of the monostable and bistable small-amplitude dynamic response, evaluated for coincident damping
parameters (ζX = ζY = ζ). Four critical curves σc–ζc corresponding to U = {0.005, 0.01, 0.03, 0.05}
are reported as thick lines with different colors. Two crosses at coordinates {σ, ζ} ≃ {0.50, 0.12} and{
1/ 3

√
4, 0.08

}
, respectively corresponding to a normalized displacement U ≃ 0.032 (blue cross) and 0.035

(red cross), are also included as transition condition from periodic to quasi-periodic motion, evaluated
from the numerical simulations presented in Sect. 5.2.2.

5 Damping role results and validation

The analytical predictions (25)-(30), obtained by the perturbation method and stability analysis in Sect.
3, are here validated by comparison with the numerical results of the simulations obtained by integration
of the fully nonlinear equations of motion (10)-(11). Following [61], the numerical solution is achieved
by analytically performing the space integration through the closed-form expressions of the elastica and
the evolution in time is numerically integrated using the semi-implicit Crank-Nicolson finite difference
method. With reference to a lumped mass value m = 0.1kg, a bending stiffness B = 1.4363Nm2, an
oscillation amplitude of the sliding sleeve u = 0.005m, the time integration is computed considering a
time-step of 1/(160f), unless stated otherwise.

5.1 Sustained motion amplitudes

The amplitude a and b of the dimensionless transverse ξ(t)/U and axial µ(t)/U2 oscillations of the
lumped mass, respectively, are reported in Figure 5 (top and bottom part, respectively) as functions of
the dimensionless coefficients ζ (left) and σ (right), showing an excellent agreement between the analytical
solution (25) and (29) (continuous lines) and the numerical results (red dots), where for the latter the
dimensionless amplitude U (on which the stability depends) can only be evaluated a posteriori, providing
U ∈ [0.0357, 0.6617]. Although such a range of normalized displacement U encompasses non-small values,
the amplitudes a and b from the perturbation approach remains in excellent agreement with the numerical
prediction since both the effective amplitudes aU and bU2 remain small.

Moreover, according to their expansion for small dissipation ζ, Eqns. (46) and (48), and the observa-
tions listed in Sect. 3.3 for small values ζ, all the amplitude curves display a null tangent at ζ = 0 and a
corresponding parabolic increase or decrease there, Fig. 5(a,c).
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Figure 5: Limit cycle amplitudes a (a,b) and b (c,d) for the system under coincident damping parameters
ζX = ζY = ζ as functions of ζ at σ = {0.626, 0.798, 0.870, 1.018, 1.171, 1.577, 2.011} (a,c) and σ at ζ =
{0.02, 0.2, 0.7} (b,d). The numerical results (red dots) from integration of the fully nonlinear equations of
motion are superimposed to the analytical predictions obtained from the perturbation method (continuous
lines).

5.2 The stabilizing and destabilizing role of damping

5.2.1 Limit cycles

The phase portraits of ξ(t) (a,b,c) and µ(t) (d,e,f) provided by the analytical (yellow dashed curve) and
numerical (blue) solutions for f = 21.127 Hz and with varying dissipation ζ = {0.1, 0.2, 0.6} (increasing
from left to right) are reported in Fig. 6 for σ = 0.5.

The numerical results refer to time intervals after which transient effects have disappeared. The
Poincaré sections are also included (light blue dots), both for the transverse oscillation ξ(t) and for the
axial oscillation µ(t), considering a sampling time equal to 1/f for the former and 1/(2f) for the latter.
When the phase portrait appears as an ellipse, the Poincaré sections are just a single point, confirming
that the motion is a periodic limit cycle. If instead, the Poincaré map and the Poincaré sections become a
region and a closed loop, respectively, the motion is quasi-periodic. The phase portraits also include the
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Figure 6: Phase portraits for ξ(τ) (a,b,c) and µ(τ) (d,e,f) under coincident damping parameters (ζX =
ζY = ζ) for ζ = {0.1, 0.2, 0.6} (increasing from left to right) for a system with σ = 0.5. Comparison
between analytical (dashed yellow) and numerical (blue) solutions.

periodic limit cycles provided by the perturbation approach, which, when compared with the numerical
results, lead to the following observations:

• two different limit cycles are displayed at ζ = 0.2 (b,e), associated with the upper and lower
branches of the positive solutions ρ, since the system parameters {σ, ζ} = {0.5, 0.2} correspond to
the bistable dynamic response (domain B in Fig. 3). Both the numerical limit cycles are periodic
in time and are very well predicted by the first-order limit cycles obtained analytically. It is noted
that while the phase portrait for µ is almost the same for the two limit cycles, this similarity does
not hold in the phase portrait for ξ;

• a quasi-periodic limit cycle and an infinitesimally small amplitude periodic one are displayed at
ζ = 0.1 (a,d). The quasi-periodic response arises in agreement with the semi-analytical assessment
in Sect. 4 revealing that the periodic limit cycle associated with the upper branch solution of ρ
becomes unstable below a threshold value for ζ. Indeed, a normalized displacement value U=0.031

is associated with the pair {σ, ζ} = {0.5, 0.1}, which belongs to M(3)
L even for the case U = 0.030,

as shown by the corresponding curve in Fig. 3);

• a single limit cycles is displayed at ζ = 0.6 (c,f), associated with the upper branch of the positive
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solutions ρ, since the system parameters {σ, ζ} = {0.5, 0.6} correspond to the monostable dynamic
response (domain MU in Fig. 3).

From the phase portraits in Fig. 6 and in agreement with the monostable and bistable domains
representation in Fig. 4(b), the dissipation role can be stabilizing or destabilizing. More specifically,
with reference only to the limit cycle associated with the upper branch solution for ρ in the case under
consideration (σ=0.5):

• stabilizing role of damping : while the system under infinitesimal small damping (ζ ≈ 0) does not
display a stable sustained motion, this becomes possible by increasing ζ. In particular, the quasi-
periodic oscillation at ζ = 0.1 becomes a periodic limit cycle at ζ = 0.2. Therefore, the increase of
damping ζ within the small range values stabilizes the limit cycle, or equivalently the reduction of
the damping leads to the loss of stability;

• destabilizing role of damping : by further increasing ζ, the periodic limit cycle visible at ζ = 0.2
disappears at ζ = 0.6. It follows that, oppositely to the previous case regarding the increase of ζ
from negligible to small values, a continuous increase of ζ eventually destabilizes the limit cycle.

It is also noted that the limit cycle associated with the lower branch solution of ρ is only affected on
its size by ζ, but not in its stability.

A representative case for σ > 1/ 3
√
4 is not reported for conciseness, however this is considered through

a different type of analysis presented in the next Subsection.
In conclusion, the analytical closed-form solution demonstrates excellent agreement with the results

from numerical simulations, as illustrated in Fig. 6, where only the long-term behavior of the system
is shown, with the transient phase excluded for clarity. Over time, the numerical simulations converge
toward the analytically predicted periodic motion, when it is semi-analytically detected as stable using
Floquet theory (see Section 4). Under these conditions, the periodic limit cycles are attractive, ensuring
the stability of the system.

5.2.2 Time-varying damping system

Numerical simulations are also performed by linearly varying in time the damping value ζ(t). The
results obtained by numerical integration with a time-step size 1/(40f) are shown in Figure 7 in terms
of the period-average value of ρ(t) for σ = {0.5, 1/ 3

√
4, 0.75} (as blue, red, and yellow continuous curves,

respectively) and corresponding frequency f = {21.127, 25.125, 28.636}Hz. In particular, the simulations
are performed by considering an initial stage where the damping is constant ζ(t) = 0.2 or ζ(t) = 0.9
for t < t, where the transient effects dissipate at the time t, followed by a second stage which considers

ζ̇(t) = ζ̇ or ζ̇(t) = −ζ̇ for t > t, with a slow damping rate ζ̇=10−3s−1 (direction of the curve is highlighted
with an arrow of corresponding color). The numerical results are complemented by the semi-analytical
predictions for the dimensionless average length ρ(ζ), obtained as unique or non-unique real solution of the
seventh degree polynomial (31), for the considered σ values (reported as dashed line with corresponding
color). The solutions obtained from the numerical integration display jumps (highlighted with triple
arrowhead), and the following observations can be drawn from their comparison with the semi-analytical
curves:

• except for some small hysteresis and a slight viscous damping delay, the numerical curves ρ(ζ) are
in a very good agreement with the respective stable portion of the semi-analytical curves ρ(ζ);
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X Y

Figure 7: Period-average ρ(t) from numerical simulations performed for σ = {0.5, 1/ 3
√
4, 0.75} (reported

as continuous blue, red, and yellow line, respectively) by linearly varying in time the damping parameters,
considered coincident as ζX(t) = ζY (t) = ζ(t), with ζ̇ = ±0.001s−1 (curve direction is highlighted with
arrow). The dimensionless average length ρ(ζ) as unique or non-unique real solution of the seventh degree
polynomial (31) is also included for the considered σ values (reported as dashed line with corresponding
color). Jumps from upper (lower) branch solution to the lower (upper) one at increasing damping pa-
rameter ζ is highlighted through a downward (upward) triple headed arrow for σ = 0.5 (σ = 1/ 3

√
4 and

0.75).

• a jump in ρ from the the upper (lower) branch solution towards the lower (upper) branch solution
occurs for σ = 0.5 (σ = 1/ 3

√
4 and 0.75) at increasing ζ, when close to critical curve ζc(σ), as a

signature of the stability loss for that limit cycle;

• for σ =
{
0.5, 1/ 3

√
4
}
the periodic limit cycle of the upper branch solution becomes quasi-periodic

by decreasing the damping ζ and by further decreasing it the sustained motion becomes completely
unstable. In this condition, after a transient time, the flexible element is completely injected into
the sliding sleeve (ρ → 0);

• for σ = 0.75 the periodic limit cycle of the upper branch solution never becomes unstable by
decreasing the damping ζ, even when this takes very small (although non-null) values. In this case,
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the sustained motion always remains periodic and stable, and the complete injection does not occur.

As a further and final observation, as shown in Fig. 7, the transition from periodic to quasi-periodic
motion occurs for {σ, ζ} ≃ {0.50, 0.12} and

{
1/ 3

√
4, 0.08

}
, corresponding to value of the normalized

displacement U ≃ 0.032 and 0.035, and this is a preliminary stage to reach the stability loss of the upper
branch solution when the damping ζ is decreased. These two transition conditions are in full agreement
with the semi-analytical prediction of the stability of the periodic motion (Fig. 4).

6 Conclusions

In the context of stabilizing unstable configurations in structural systems through parametric excitation,
the effect of damping on a novel class of resonant variable-length structures has been extensively studied.
This class of structures, characterized by the presence of a sliding sleeve constraint that enables the
external length of an elastic rod to vary, is closely associated with the framework of configurational
mechanics [55, 56]. Recent studies [61] have highlighted its self-tuning capabilities when the sliding sleeve
constraint is harmonically oscillating in the transverse direction. This unique property, marked by the
rod’s spontaneous adjustment of its length outside the sliding sleeve to establish a new stable trajectory in
response to variations in the amplitude and frequency of the constraint’s harmonic motion, opens the door
to a new generation of single resonant structures. These innovative structures are capable of operating
over a significantly broader frequency range than conventional ones, owing to their variable-length design.

As a first step towards a theoretical evaluation of the dissipation effect on such a self-tuning resonant
system, the limit cycles and their stability have been analyzed by incorporating linear dampers in both
the longitudinal and transverse directions, based on prior experimental validations [60, 61]. The main
findings of the present investigation can be summarized as follows:

• first-order limit cycles have been analytically identified using a perturbation approach, and their
stability has been evaluated through a semi-analytical method;

• the reliability of the small-amplitude semi-analytical periodic solution has been fully validated by
results obtained from the numerical integration of the nonlinear equations of motion;

• within the order of approximation of the derived analytical solution, the longitudinal dissipation
parameter ζY has been found to have no effect on either the average external length ℓm or the limit
cycle of the transverse coordinate x(t);

• viscous dissipation has been shown to play a non-unique role, as it can either stabilize or destabilize
the limit cycle depending on the system parameters;

• under the assumption of small normalized oscillation amplitude U and considering non-vanishing
transverse damping (ζX ↛ 0), it has been shown that the variable-length structural system always
exhibits at least one stable limit cycle.

The present work has adopted a straightforward expansion of the system’s state variables to analyt-
ically reveal the influence of the damping coefficients ζX and ζY on the average external length ℓm—a
relationship that has not been previously addressed. This study has successfully achieved that objec-
tive, as shown in the paper, and has also provided a first-order approximation of the periodic solutions
the system can attain. For future research targeting higher-order approximations of periodic and quasi-
periodic solutions, more advanced techniques—such as the Lindstedt–Poincaré method or the Method of
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Multiple Scales [52, 69]—can be employed. Moreover, since the obtained results are dependent on the
specific damping law used, and the current analysis can be expanded to incorporate other types of damp-
ing sources, this methodology can serve as a tool for achieving target responses by tuning the damping
mechanism. Thus, the developed framework lays the groundwork for designing innovative mechanical
components that can be applied across a variety of technological fields, including soft robotics, energy
harvesting, and wave attenuation. In fact, the amount of damping can be controlled over time to drive
the self-tuning property and enable the creation of purely mechanical switching devices based on the
stability loss of solution branches.
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A Equations of motion

The equations of motion of the mechanical system presented in Section 2 are derived by using the extended
Hamilton’s principle, according to which the following variational condition has to be satisfied, for any
kinematically admissible motion of the system in the generic time-interval [t1, t2],

δH := δ

∫ t2

t1

(
m

ẊL
2 + ẎL

2

2

)
dt−

∫ t2

t1

(
mg δYL + cXẊLδXL + cY ẎLδYL

)
dt

− δ

∫ t2

t1

∫ L

L−l(t)

B (θ′)2

2
dsdt+ δ

∫ t2

t1

∫ L

0

(
Nx (sin θ − x′) +Ny (cos θ − y′)

)
dsdt = 0.

(56)

In this model, the only inertial terms are those associated with the mass, m, attached at the rod end.
The effects of damping on the system is that depending on the damping coefficient c. The rod inertia
is neglected, while the rod’s elastic energy coincides with its bending energy, which depends on rod’s
curvature θ′(s, t) and bending stiffness B. Finally, the kinematic constraint associated with the rod’s
inextensibility is accounted for via Lagrange’s multipliers, Nx(s, t) and Ny(s, t), having the mechanical
meaning of internal force components along the x and y axes, respectively.

Standard procedures based on integration by parts and localization lead to the equations of motion
(10) for the system, complemented by boundary conditions (11).

As is apparent, the equations that govern the deflection of the rod axis (coinciding with the equations
of the Euler’s elastica in the problem at hand) and those which describe only the motion of the mass
m, are coupled to each other because of the Lagrange’s multipliers, Nx and Ny. However, in the case of
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moderate rotations of the rod cross-sections, it is possible to express the Lagrange’s multipliers in terms
of the displacement components of the rod free-end and decouple the equations of motion of the mass-rod
system into two groups: one of them governs the motion of the mass m attached at the free-end of the
rod, as a function of the weight force mg, the damping coefficient c, and the sleeve motion u(t); the
other group provides the deflected shape of the entire rod’s axis. This is obtained, in the present work,
by resorting to a perturbation approach, as is now described.

Under the assumption of moderate cross-section rotations and adopting a perturbation approach,
a small positive parameter ε (0 < ε ≪ 1) is conveniently introduced to develop the calculations: the
rotation θ is rescaled and expanded, θ = ε (θ0 + εθ1 + ...); the Lagrange’s multipliers are rescaled as well,
Nx = εNx0 and Ny = ε2Ny0. Equation (10) is then attacked via a straightforward perturbation method.
Doing this, the following relations can be derived

θL =
Nxℓ

2

2B
+ h.o.t., θ′c =

Nxℓ

B
+ h.o.t., xL =

Nxℓ
3

3B
+ h.o.t., yL = ℓ− N2

xℓ
5

15B2
+ h.o.t., (57)

where θL = θ(L, t), θ′c = θ′(L − l(t), t), xL = x(L, t), yL = y(L, t), and h.o.t. stands for higher order
terms.

Neglecting the higher order terms (h.o.t.) in Equations (57), and combining these latter with Equa-
tions (10)-(11), it is possible to express the Lagrange’s multipliers Nx and Ny in terms of xL and yL,

Nx =
3B xL
y3L

, Ny = −Bθ′ 2c
2

= −
9B x2L
2 y4L

, (58)

and, consequently, to obtain Equations (12).
The solution of the non-linear differential algebraic equations (12) with the relevant initial conditions

provides the time-dependent displacement components xL and yL of the rod’s end. Once xL and yL are
evaluated, the Lagrange’s multipliers Nx and Ny follow from (58) as well as the deflected shape of the
rod axis as the solution of the elastica problem, i.e., the ordinary differential equation

Bθ′′(s, t) +Nx(t) cos θ(s, t)−Ny(t) sin θ(s, t) = 0, (59)

subject to the boundary conditions θ(L− ℓ(t), t) = 0 and θ′(L, t) = 0.
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