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Abstract
Cylindrical structures such as rings and arches exhibit instabilities under external radial force
distributions, typically evidencing an oval-shaped bifurcation mode. The presence of an
internal material significantly alters this behaviour. An analytical solution is derived using
a complex potential formulation [1] to describe the bifurcation behaviour of an elastic disc
coated with a circular elastic rod [2]. Both perfect and incomplete bonds at the disc-coating
interface are considered, and the effects of distinct types of radial loads are captured. The
mechanical properties and loading conditions of the coating–disc system, determine a broad
spectrum of bifurcation modes, ranging from low-order ovalization to high-order undulatory
patterns. The theoretical framework and results are relevant to a wide range of applications,
including coated fibre systems, and biologically inspired phenomena such as plant and fruit
morphogenesis.

1-Mechanical model and method
When the coating is thin compared to the disc radius R, it can be modelled as a thin
interface, a one-dimensional curve with prescribed boundary conditions, governed by the
elastic rod equations. The problem is entirely solved on the coating, recognising stress
transmission between the disc and the outer coating.

p

p

Interface model for the
inextensible coating Complex variables formulation



2µu (z) = κφ (z) − zφ′ (z) − ψ (z)
σ11 + σ22 = 4 Re(φ′ (z))
σ22 − σ11 + 2iσ12 = 2 [zφ′′ (z) + ψ′ (z)]
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Thanks to Kolosov–Muskhelishvili complex potentials, the elastic fields on the boundary
and within the disc are fully described. The complex Fourier series method enables
the solution for any applied load distribution.

2-Radial forces applied to a annular rod
Radial and uniform loads leave an axially inextensible circular rod undeformed and
subject to a trivial state of pure normal compressive force until buckling occurs. However,
initially identical load distributions may differ in the way they react to the deformation.
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t m The load is said to be a "dead" radial load if it
remains parallel to the normal unit vector m0
when passing from the reference to the current
configuration.

(iii.) Dead load
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The load is said to be centrally-directed if it re-
mains always directed towards the initial centre
of the ring.

(ii.) Centrally-directed radial load
Π
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The load is said to be hydrostatic if it is parallel
to the normal unit vector m when passing from
the reference to the current configuration.

The critical radial load Πcr, at which bifurcation occurs in an annular rod with bending
stiffness B and radius R, arises for all types of radial loading (i–iii) and under any externally
applied constraint. However, the presence or absence of such a constraint modifies the
value of Πcr.

Πcr = k2B
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3-Incremental response for the disc/coating system
In its reference configuration and loaded with an external radial load Π, the annular rod is
subject to an axial internal force N0 = −ΠR, while the interior disc remains unstressed.

At bifurcation, a non-trivial incre-
mental deformation occurs, causing
the disc to experience incremen-
tal stress and strain. The resulting
incremental traction at the disc’s
boundary, multiplied by its thickness
b, gives rise to an incremental force
acting on the rod.

x0µd, νd

B

R

e1O

e2
Π

N0

N0

bṠrr
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The incremental response of the disc/coating system is governed by the following equation
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where the terms SΠ and Sσ rule the type of applied radial load and the interface stress
transmission properties, respectively.

4-Critical loads for the disc/coating system
The use of a complex Fourier series expansion of the governing equations, with unknown
displacement fields expressed via complex coefficients, enables the formulation of the
Sturm–Liouville problem governing the buckling of the coated disk. When the complex
coefficients vanish, the trivial solution is obtained, otherwise, the bifurcation radial load
for the coated disc, corresponding to the n-th mode, is obtained

Π(n)R3

B
=

2n2 (n2 − 1) + 2µ
dbR3

κdB

(n + M )κd + n− M


2 (n2 − 1) + ξ
(1 − n)α−1 + (1 + n)α−1 , n ≥ 2, (1)

where M = 1 (M = 0) for perfect bonding (for slip contact) at the rod/core interface
and ξ = α = 1 for hydrostatic pressure, ξ = 1 and α = 0 for centrally directed load and
ξ = α = 0 for dead radial load. Equation (1) shows that, when parameter µdbR3/B tends
to zero, the coated disc behaves as a rod subject to the radial load Π.
4.1-Radial forces and modes

For a given set of material and geometrical
parameters and varying the mode number n
in equation (1), different values for the bifur-
cation load can be analysed.
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The critical value corresponds to the inte-
ger number n that minimises the equation
(1). The presence of the inner disc may
lead to the predominance of high-wavenumber
modes. Once a value of n, corresponding
to a given applied pressure Π(n), is fixed,
the Kolosov–Muskhelishvili formulae allow for
the determination of all elastic fields at every
point within the boundary of the disc.
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4.2-Bifurcation results
When the critical value ncr is inserted inside
the equation (1), the critical response for
different stiffness contrasts between the disc
and the coating can be investigated for the
three radial load distributions and different
interface conditions. The analysis reveals
that the critical load increases with increas-
ing stiffness. However, the critical loads are
smaller under slip conditions than perfect
bonding conditions. The increase in the crit-
ical load is accompanied by an increase in
the wavenumber n of the bifurcation mode
(alternance of different colour marking the
curves in the following figure).
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