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Abstract

Two-dimensional architected materials are often implemented as periodic grids of elastic beams. Conventional homogenization methods approximate these structures as equivalent elastic solids
but typically neglect shear deformation in the constituent beams. This work addresses that limitation by incorporating shear deformability via Timoshenko beam theory, enabling accurate
modeling of stubby beams. Introducing shearable beams into the grid expands the design space, allowing for greater control over the effective Poisson’s ratio, surpassing the limits imposed by
slender beam models. Furthermore, the shear-enriched model corrects potential mispredictions of auxetic behavior that may arise when relying solely on the Euler–Bernoulli beam theory.

Introduction and notation

The classical quasi-static homogenization of two-dimensional periodic beam grids is extended by incorporating shear-deformable beam theory, enabling accurate modeling of stubby beams.
The elastic properties of the resulting effective material, with out-of-plane thickness h, are expressed as functions of the beam slenderness Λ and the shear coefficient ϕ. Three approaches are
possible for designing stubby beams: (i) homogenizing a discrete chain equipped with axial springs, sliders with springs and elastic hinges, resulting in a beam where all the three stiffnesses are
unrelated to each other. (ii) designing a junction in which the beams lay on separate planes, but preserving the out-of-plane symmetry, allowing them to attain extremely low slendernesses.
(iii) perforating a plate: this approach is limited for highly stubby beams, where the holes become so small they vanish.

Λ = l
√

(EsA)/(EsJ) = l
√

ka/kr slenderness of the beams, ϕ =
√

2(1 + νs)/κ =
√

ka/kt shear coefficient of the beams, κ shear correction factor,

l, A, J length, cross-section area and moment of inertia of the beams, Es, νs Young modulus and Poisson’s ratio of the constituent material, k spring stiffness of the discrete chain.

The Timoshenko beam theory

The Timoshenko beam theory relaxes the Euler-Bernoulli assumption that the cross sec-
tions of a deflected beam remain perpendicular to its axis. Under the assumption of small
deflections and rotations, the kinematics and the equilibrium equations, and the consti-
tutive laws for the Timoshenko beam are

ε(x) = u′(x), γ(x) = v′(x)− θ(x), χ(x) = θ′(x)

N ′ = 0 , V ′ = 0 , M ′ = −V ,

N = EsAε, V = κGsAγ, M = EsJ χ .

The elastic strain-energy of the Timoshenko
beam is

E =

∫ l

0

(
EsAε2 + κGsAγ2 + EsJ χ2

)
dx. Fig. 1: Deformed configuration of the planar Tim-

oshenko beam at coordinate x.

Homogenized discrete chain

The homogenization of a discrete periodic chain of rigid elements, equipped with elastic hinges of
stiffness kr, axial springs of stiffness ka and sliders with spring of stiffness kt, has been shown to
yield a continuous beam model, including the Euler-Bernoulli and the Timoshenko beam models.
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Fig. 2: A microstructured chain model.

In the limit where a → 0 and n → ∞, Ed → E so that ka a → EsA, kt a → κGsA, kr a → EsJ .

Quasi-static homogenization procedure

A periodic beam grid can be created by tessellating a unit cell along the directions defined by the direct basis vectors a1 and a2. The quasi-static
homogenization procedure is based on the matching between the elastic strain-energy density of the unit cell and the one of a Cauchy elastic continuum.
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where C is the area of the unit cell, K is the stiffness matrix of the unit cell, q = q̃+ q̂(ε) is the generalized displacement vector — decomposed into a
periodic field q̃ = Z0q̃

∗ and an affine deformation such that, for any node j of the unit cell, q̂(j) = εx(j) — and E is the fourth-order elasticity tensor.
Fig. 3: Deformed configuration for a square
lattice and its unit cell, chosen to minimize
the number of beams.

Material equivalent to a hexagonal lattice

Fig. 4: The dimensionless Young modulus and
the Poisson’s ratio of the material equivalent
to an hexagonal grid of Timoshenko beams are
plotted as functions of the Poisson’s ratio of
the constituent material, νs (or equivalently,
ϕ), and the slenderness, Λ, for κ = 5/6.

Elh
EsA

= 16
√
3

Λ2+12(ϕ2+3), ν = Λ2+12(ϕ2−1)
Λ2+12(ϕ2+3)

The elastic constants of the equiv-
alent material can be tuned by
properly selecting Λ and ϕ (or νs).
The gray zone becomes attainable
when the microstructured beam in
Fig. 2 or the junction in Fig. 5 is
used.

The plate with holes condenses
into an intact plate.

Conceptual model of the node for

stubby beams

Fig. 5: Proof-of-concept design of a junction of 4 stubby beams, operating in
separate planes without interference, but preserving out-of-plane symmetry.
Perspective view (left) and exploded view (right). The junction imposes
full continuity of displacement between the connected beams. Each beam is
connected to the junction through orthogonal ‘pivots’ that prevent relative
rotation while allowing the Poisson’s effect.
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A dash denotes differentiation
with respect to the coordinate x.

The chain is created by periodically re-
peating a unit cell of length a.

For the square lattice sketched in Fig. 3, q̃ = [q̃(lb), q̃(rb), q̃(lt)]T,

q̃∗ = q̃(lb), and Z0 = [I, I, I ]T

For an isotropic constituent material, the Euler-Bernoulli
model coincides with the Timoshenko model when νs = −1.


