Dynamics of origami-like microstructured elastic rods
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Introduction

The nonlinear dynamics of a shearable elastic rod, modelled through homogenisation
of microstructure composed of elastic hinges and four-bar linkages, is studied. This
microstructure enables the shear deformation and is capable of producing folding
and faulting patterns [1]. Moreover, this microstructure allows only length shortening.
In the present contribution, we extend this work to investigate the dynamical aspects.

Vibration Modes of a rod: Clamped-Free ends

m T he effect of £ on the modes of vibrations
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where v, ,.,q IS the natural frequency of i th mode for a pure bending case. The

. . . . J 2
rotational inertial ' defined as £« ;l’;bw is taken as zero.

m [he effect of £ on the mode shapes

Figure: Microstructured one-dimensional structure and equivalent shearable elastic rod.

m() = (% and ()' = % where s € [0, ] is arclength parameter and r € [0, o] is time.
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Equilibrium Equations

Discrete Model
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B The vibrating modes for various C are shown in green, while vibrating modes of pure bending are shown in red for comparisio
B The vibrating modes corresponding to discrete model for N=20 are displayed through overlapping four-bar linkages.
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m [ he effect of mesh size N and the rotational inertia I’

—K,p; — Nlaasin (6, + ;) + N;aa cos (6, + ) =0

i+1 i T S N S . P
N — N, —2m,X; — Embxi_l—mbxi - Embxjﬂ + (...)af; + (...)ad;

+(...)ab;,, + (...)ab%, =0,

i+1 i N S N S .. P
Ny™ = Ny = 2m,5; = —myJi y=myy; = - my 5 + (... )ab; + (... )ab;

+(...)ab, + (...)ab% , =0,

N — o

—— First Mode
—— Second Mode
—— Third Mode

—— First Mode (IF'=0) —— Third Mode (' =0)
——- First Mode (I =8x107?) ——= Third Mode (I'=8x107?)
—— Second Mode (I'=0) —— Fourth Mode (I'=0)

Continuum Model
— (,0,,w2 + paJ)é + EI0" — N, ((1 — a)sin @ + a sin (9 + y/a) )

—— Fourth Mode

20 30 40 50 60
Mesh Size N
Fixed (=20, I'=0

——=- Second Mode (I' =8x107°)

—== Fourth Mode (I =8x1073)

60 80
Shearability

Fixed N=20

100 120 140

+N, ((1 — a)cos @ + acos ((9 + y/a)) =0,

where w; , is the natural frequency of i th mode of continuum model for a given ¢

—GAyy — N, sin (6 + y/a) + N, cos (0+yla) =0, - and w, y is the natural frequency of i th mode for a N sized discrete model.
N —pi =0,
x—(1 —a)cos@ — acos(@+ y/a) =0,

y—(1 —a)sinf — asin(@ + y/a) = 0.
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Conclusion and Future Studies

m [he continuum model obtained through homogenization of the origami

m The continuum quantities p, p, and y are the linear mass densities and shear microstructure effectively represents the dynamics under small deformations.

angle, respectively m Nonlinear dynamical analysis and forced vibrations
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These equations are same as that of Timoshenko beam and Rayleigh beam.

m For small deformations, x ~ sandy = 6 + y.




