
Dynamic Instability and Limit Cycles in Nonlinear Mechanical Systems 

under Non-Holonomic Constraints

Motivation and Background

Dynamic instabilities in mechanical systems have traditionally been linked to follower loads, which can also give rise to counterintuitive 
behaviors, such as the damping-induced destabilization in the Ziegler’s double pendulum and Beck’s beam, where the introduction of 
small internal damping reduces the critical load (Ziegler’s paradox). Similar destabilization phenomena occur in systems with nonlinear 
damping, where internal and external nonlinear damping sources can destabilize otherwise stable limit cycles, leading to a hard loss of 
stability [1,2]. Flutter and divergence instabilities can also be triggered by dry friction (Fig. 1), as demonstrated experimentally by Bigoni 
and Noselli [3]. Recently, studies have identified analogous instability mechanisms and damping-induced destabilization in conservative 
systems subjected to non-holonomic constraints [4]. This study provides an analytical exploration of the intricate interaction between 
nonlinear dynamics and non-holonomic constraints in nonlinear mechanical systems subjected to conservative loading. 

The analysis centers on a representative model (Fig. 2): a double 
pendulum with a conservative loading mechanism at one end and 
a rolling wheel at the other. The governing equation is in the form:
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Employing the Method of Multiple Scales (MSM) as in [2], limit 
cycles near Hopf bifurcations are derived analytically, providing 
new insights into the nonlinear dynamics induced by this 
configuration. Remarkably, the perturbation equations obtained 
via MSM share the same structure as those of Ziegler’s double 
pendulum, with key distinctions in the forcing terms, which here 
restore the system’s conservative nature. The analytical findings 
demonstrate that Hopf bifurcations can occur in conservative 
systems when non-holonomic constraints are present. Moreover, 
the presence of damping can negatively impact not only the 
critical load that triggers the bifurcation but also the post-critical 
dynamics and the stability of the resulting limit cycles. Numerical 
simulations (e.g., Fig. 3) confirm the analytical findings.

where M, C, K, H are constant matrices, n is a vector of 
nonlinearities, q = [θ1, θ2]

T is a vector of independent Lagrangian 
parameters, and μ denotes the conservative load.

Methods and Results

Figure 2: Non-holonomic double pendulum derived from the system in Fig. 1 
by fixing the moving plate and introducing a prismatic guide together with a 
dead force μ that acts through the guide, pushing the system.

Figure 3: Analytical solution (MSM orders 0 and 1) 
and numerical solution (NUM) providing the phase 
portrait of the limit cycle of the lagrangian variable 
θ1 and its maximum value as a function of the 
conservative load parameter μ measured from the 
Hopf critical load μf . Similar results hold for the 
lagrangian variable θ2.
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Figure 1: Double pendulum mounted on a moving plate, subjected at one end 
to a frictional force P, which is proportional to a normal reaction, R, generated 
by a suspended weight, W, through a lever mechanism.
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