

PhD Program in "Civil, Environmental and Building Engineering, and Architecture"

SEMINAR ANNOUNCEMENT

Playing with unstable architected materials

Prof. Davide Bigoni

University of Trento, Italy

Monday 18 November 2024 at 11.30 Aula Seminari DICEA, sezione Strutture, Q150 (DICEA-150/stru)

A careful design of prestressed architected materials leads to the control of material instabilities, both for compressive [1] and tensile axial forces [2]. Moreover, the architecture of the analyzed structures leads to the emergence of multiple band gaps, flat bands, and Dirac cones [3].

The experience gained on structural flutter [4, 5] is exploited to implement a new concept, namely, the possibility of surpassing hyperelasticity to obtain elastic materials in which strain energy does not exist [6]. This concept paves the way for new micro and nano technologies and offers clear applications, particularly in areas such as energy harvesting.

Acknowledgements Financial support from ERC-ADG-2021-101052956-BEYOND is gratefully acknowledged.

References

- [1] Bordiga, G., Cabras, L., Piccolroaz, A., and Bigoni, D. "Dynamics of prestressed lattices: Homogenization, instabilities, and strain localization" J. Mech. Phys. Solids, 146, 104198 (2021).
- [2] Bordiga G., Bigoni D. and A. Piccolroaz "Tensile material instabilities in elastic beam lattices lead to a closed stability domain". Phil. Trans. Royal Soc. A, Vol. 380, 20210388, (2022).
- [3] Cabras, L., Bigoni, D., and Piccolroaz, A. Dynamics of elastic lattices with sliding constraints. Proc. Royal Soc. A 480, 20230579, 2024.
- [4] Rossi, M., Piccolroaz, A., Bigoni, D., "Fusion of two stable elastic structures resulting in an unstable system" J. Mech. Phys. Solids, 173, 105201 (2023).
- [5] Bigoni, D., Dal Corso, F., Kirillov, O., Misseroni, D., Noselli, G., Piccolroaz, A. Flutter instability in solids and structures, with a view on biomechanics and metamaterials. Proc. Royal Soc. A 479, 20230523 (2023).
- [6] Bordiga, G., Piccolroaz, A., and Bigoni, D., "A way to hypo-elastic artificial materials without a strain potential and displaying flutter instability" J. Mech. Phys. Solids, 158, 104665 (2022).

All interested people, particularly PhD students, are invited to attend the seminar

This activity is part of the 2023/27 "Dipartimento di Eccellenza" project of DICEA.